
Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 400

Course Notes on

Computational Finance

4
Finite-Difference Methods

for American Vanilla Options



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 401

4. Finite-Difference Methods for American Vanilla Options

This chapter considers options with vanilla payoff Ψ(S), where S is the price of an
underlying asset. The assumed model for St is GBM. A continuous flow of dividend
payments is admitted, with constant dividend rate δ ≥ 0. Hence the GBM is

dSt

St

= (µ − δ) dt + σ dWt .

4.1 Preparations

The Black–Scholes equation for the value V (S, t) of a standard option is

∂V

∂t
+

1

2
σ2 S2 ∂2V

∂S2
+ (r − δ)S

∂V

∂S
− r V = 0 ,

defined on the domain S > 0, 0 ≤ t ≤ T . Terminal condition: V (S, T ) = Ψ(S).



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 402

This partial differential equation (PDE) can be solved directly with numerical me-
thods. But then tricky stability issues must be tackled. Here we prefer applying trans-
formations as much as possible in order to obtain simpler equations, e.g. with the
transformation S = ex.

Assumption: σ, r and δ are constant.

Then the Black–Scholes equation can be transformed to a strikingly simple type of

PDE (exercises). With t = T − 2τ
σ2 , S = Kex, q := 2r

σ2 , qδ := 2(r−δ)
σ2 and y(x, τ)

defined by

V (S, t) = V (Kex, T − 2τ

σ2
) =: v(x, τ)

v(x, τ) = K exp

{

−1

2
(qδ − 1)x −

(
1

4
(qδ − 1)2 + q

)

τ

}

y(x, τ)

one obtains

∂y

∂τ
=

∂2y

∂x2



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 403

This is a parabolic equation which has an analytic solution. A back transformation
establishes the well-known Black-Scholes formula. So, for a standard option of Euro-
pean style no specific numerical method is needed.

The aim of the chapter is to price American options.

Generic applications of the simple PDE yτ = yxx are heat conduction and diffusion
in a one-dimensional medium. The problem is well-posed as initial-value problem
with increasing τ . The time transformation t → τ converts the terminal condition for
V (S, T ) = Ψ(S) to an initial condition for τ = 0:

call : y(x, 0) = max
{

e
x
2
(qδ+1) − e

x
2
(qδ−1), 0

}

put : y(x, 0) = max
{

e
x
2
(qδ−1) − e

x
2
(qδ+1), 0

}

A solution y of the initial-value problem is defined on the domain

−∞ < x < +∞, 0 ≤ τ ≤ 1

2
σ2T =: τmax ,

which is a strip in the (x, τ)-plane. “Boundary” here means x → −∞, x → +∞.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 404

Boundary-Value Problem

For numerical purposes the infinite strip is truncated to a rectangle, with

xmin ≤ x ≤ xmax .

This “localization” cuts down the influence of the initial conditions, and additional
conditions must be formulated to make the problem well-posed. These are boundary
conditions for the sides xmin and xmax. For the solution w(x, τ) of the boundary-
value problem on the rectangle we aim at w ≈ y, which requires the rectangle to be
“large.” The sides xmin and xmax must be chosen accordingly. In addition, the interval
must include the range of financial interest, namely, the x-values of S0 and K. This
requires

xmin < min

{

0, log
S0

K

}

, max

{

0, log
S0

K

}

< xmax .

For simplicity, just think of xmin = −3 and xmax = 3. — Later we shall see that for
American options the partial differential equation mutates to an inequality.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 405

4.2 Basics of Finite-Difference Methods (FDM)

A. Difference Approximations

Recall

f ′(x) =
f(x + h) − f(x)

h
− h

2
f ′′(ξ) for a ξ ∈ (x, x + h) and f ∈ C2

We introduce an equidistant grid with grid points xi

... < xi−1 < xi < xi+1 < ...

and h := xi+1 − xi. [In the non-equidistant case one often prefers finite-element me-
thods (FEM)]. This chapter is confined to equidistant grids.

Analogously, with notation fi = f(xi), the following holds true:

f ′(xi) =
fi+1 − fi−1

2h
+ O(h2) for f ∈ C3

f ′′(xi) =
fi+1 − 2fi + fi−1

h2
+ O(h2) for f ∈ C4

f ′(xi) =
−fi+2 + 4fi+1 − 3fi

2h
+ O(h2) for f ∈ C3



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 406

B. The Grid

For an m ∈ IN and a νmax ∈ IN define

∆x :=
xmax − xmin

m
, xi := xmin + i · ∆x , i = 0, 1, ...,m ;

∆τ :=
τmax

νmax
, τν := ν · ∆τ , ν = 0, ..., νmax .

yi,ν := y(xi, τν) is the value of y at the node (xi, τν). Approximations of yi,ν are
denoted wi,ν . The values

wi,0 = y(xi, 0)

are known from the initial conditions.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 407

C. Explicit Method

In the PDE, replace

∂yi,ν

∂τ
:=

∂y(xi, τν)

∂τ
=

yi,ν+1 − yi,ν

∆τ
+ O(∆τ) and

∂2yi,ν

∂x2
=

yi+1,ν − 2yi,ν + yi−1,ν

∆x2
+ O(∆x2) ,

drop the O-error terms, replace y → w, and obtain the difference equation

wi,ν+1 − wi,ν

∆τ
=

wi+1,ν − 2wi,ν + wi−1,ν

∆x2
.

In case all values w are calculated for the time level ν, then the values of the time
level ν + 1 are given by

wi,ν+1 = wi,ν +
∆τ

∆x2
(wi+1,ν − 2wi,ν + wi−1,ν) .

With the notation

λ :=
∆τ

∆x2

this is rewritten as



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 408

wi,ν+1 = λwi−1,ν + (1 − 2λ)wi,ν + λwi+1,ν . (∗)

Start with ν = 0, since there the wi,0 are known. That is, for ν = 1 all wi,1 can be
calculated with the explicit formula (∗), and similarly the wi,ν -values of the following
time levels.

ν is the outer loop index and i the inner index. This suggests to describe the procedure
by vectors and matrices: Use

w(ν) := (w1,ν , . . . , wm−1,ν)tr

(so far, reasonable boundary components w0,ν and wm,ν are lacking) for the values of
the ν-th time level, and the (m − 1) × (m − 1)-matrix

A := Aexpl :=











1 − 2λ λ 0 · · · 0

λ 1 − 2λ
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . λ

0 · · · 0 λ 1 − 2λ











Now the explicit method can be written



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 409

w(ν+1) = Aw(ν) for ν = 0, 1, 2, ..., νmax − 1

up to a modification taking care of boundary conditions for w0,ν and wm,ν . Prelimi-
narily, for ease of presentation, we have set the boundary conditions to zero.

Example of Instability

yτ = yxx with y(x, 0) = sinπx, x0 = 0, xm = 1 and boundary conditions = 0.
Let us approximate y(x = 0.2, τ = 0.5) using a grid with ∆x = 0.1, i.e. m = 10
and 0.2 = x2, and two different values of ∆τ :

a) ∆τ = 0.0005 ⇒ λ = 0.05 and 0.5 = τ1000

yields w2,1000 = 0.00435 (exact is 0.004227)

b) ∆τ = 0.01 ⇒ λ = 1 and 0.5 = τ50

yields w2,50 = −1.5 · 108 (an instability)



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 410

D. Stability

Error analysis of w(ν+1) = Aw(ν) + d(ν) (above d(ν) = 0)

Notation

w(ν) exact vectors of w(ν+1) = Aw(ν) + d(ν),

w(ν) versions calculated in the computer, subjected to rounding errors,

e(ν) := w(ν) − w(ν) .

In exact computation, w(ν+1) − Aw(ν) − d(ν) is nonzero; we call this vector r(ν+1),

w(ν+1) = Aw(ν) + d(ν) + r(ν+1) .

The vector r(ν+1) represents the rounding errors in the ν-th step.

It suffices to study the propagation of one error. So we set r(ν) = 0 for ν > 1, i.e.,
study propagation of the error e(0) in the course of the iterations.

⇒ w(ν+1) = Aw(ν) + d(ν) (ν > 1)

⇒ Ae(ν) = Aw(ν) − Aw(ν) = w(ν+1) − w(ν+1) = e(ν+1)

⇒ e(ν) = Aνe(0)

For stable behavior, we require Aνe(0) → 0 for ν → ∞.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 411

Notation:
ρ(A) := max

k
|µA

k | where µA is eigenvalue of A

Lemma 1
ρ(A) < 1 ⇐⇒ Aνz → 0 for all z and ν → ∞

Proof: Textbooks on Numerical Analysis.

A has the structure

A = I − λ ·











2 −1 0

−1
. . .

. . .
. . .

. . .
. . .

. . .
. . . −1

0 −1 2











︸ ︷︷ ︸

=:G

.

⇒ µA = 1 − λµG.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 412

Lemma 2

For G =











α β 0

γ
. . .

. . .
. . .

. . .
. . .

. . .
. . . β

0 γ α











∈ IRN×N the eigenvalues are

µG
k = α + 2β

√
γ

β
cos

kπ

N + 1
, k = 1, ..., N.

Proof:

With the eigenvectors

v(k) =

(
√

γ

β
sin

kπ

N + 1
,

(√
γ

β

)2

sin
2kπ

N + 1
, ...,

(√
γ

β

)N

sin
Nkπ

N + 1

)tr

check Gv(k) = µGv(k).

(For γ = β the eigenvectors do not depend on α, β, γ.)



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 413

Applying Lemma 2 either directly to A, or to G with N = m−1, α = 2 and β = γ = −1,
yields

µG
k = 2 − 2 cos

kπ

m
= 4 sin2

(
kπ

2m

)

µA
k = 1 − 4λ sin2 kπ

2m
.

By Lemma 1:

stability ⇐⇒
∣
∣
∣
∣
1 − 4λ sin2 kπ

2m

∣
∣
∣
∣
< 1, k = 1, ...,m − 1

⇐⇒ λ > 0 and − 1 < 1 − 4λ sin2 kπ

2m
, or

1

2
> λ sin2 kπ

2m

For the second inequality λ ≤ 1/2 is sufficient. In summary,

For 0 < λ ≤ 1
2

the explicit method w(ν+1) = Aw(ν) with A = Aexpl is stable.

Because of λ = ∆τ
∆x2 , or 0 < ∆τ ≤ 1

2∆x2, the step sizes ∆τ and ∆x can not be chosen
independent of each other.

Conclusion: This explicit method is not satisfying.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 414

E. An Implicit Method

The backward difference quotient

∂yi,ν

∂τ
=

yi,ν − yi,ν−1

∆τ
+ O(∆τ).

leads to

−λwi+1,ν + (1 + 2λ)wi,ν − λwi−1,ν = wi,ν−1 .

This is a system of coupled linear equations for the wi,ν . With

A := Aimpl :=








1 + 2λ −λ 0

−λ
. . .

. . .
. . .

. . . −λ
0 −λ 1 + 2λ








the vector w(ν) is defined implicitly as solution of Aw(ν) = w(ν−1), or

Aw(ν+1) = w(ν) , ν = 0, . . . , νmax − 1.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 415

(We still use the preliminary boundary conditions w0,ν = wm,ν = 0.) This method
is called backward difference method or backward time centered space (BTCS) or fully
implicit.

Stability

The above Lemmas imply that the method is unconditionally stable, and ∆τ and
∆x can be chosen independent of each other.

Costs

νmaxO(m), since only one LR-decomposition of A for ν = 0 is necessary (cheap for
a tridiagonal matrix). For each ν, only one backward loop is required, which costs
O(m) operations.

A weakness of this method (and of the explicit method) is the accuracy of the first
order in ∆τ , the error is of the order

O(∆x2) + O(∆τ) .



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 416

4.3 Crank–Nicolson Method

It would be desirable to have a stable method with error O(∆τ2) for

∂y

∂τ
=

∂2y

∂x2
.

From the previous section, we assemble the forward quotient for ν

wi,ν+1 − wi,ν

∆τ
=

wi+1,ν − 2wi,ν + wi−1,ν

∆x2

and the backward quotient for ν + 1

wi,ν+1 − wi,ν

∆τ
=

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

∆x2
.

Adding both equations yields the scheme

wi,ν+1 − wi,ν

∆τ
=

1

2∆x2
(wi+1,ν − 2wi,ν + wi−1,ν + wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1) .



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 417

Theorem (Crank–Nicolson)

For this scheme the following assertions hold:

1.) For y ∈ C4 the method is of the order O(∆x2) + O(∆τ2).

2.) For each ν a system of linear equations in tridiagonal form must be solved.

3.) The method is stable for all ∆τ > 0.

Proof:

1.) With the notation

δxxwi,ν :=
wi+1,ν − 2wi,ν + wi−1,ν

∆x2

the Taylor expansion for y ∈ C4 yields

δxxyi,ν =
∂2

∂x2
yi,ν +

∆x2

12

∂4

∂x4
yi,ν + O(∆x4) .

Then the local discretization error

ε :=
yi,ν+1 − yi,ν

∆τ
− 1

2
(δxxyi,ν + δxxyi,ν+1)

satisfies

ε = O(∆x2) + O(∆τ2) .



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 418

2.) With λ := ∆τ
∆x2 the scheme is rewritten

−λ

2
wi−1,ν+1 + (1 + λ)wi,ν+1 −

λ

2
wi+1,ν+1

=
λ

2
wi−1,ν + (1 − λ)wi,ν +

λ

2
wi+1,ν .

With the preliminary boundary conditions w0,ν = wm,ν = 0 this is the matrix-
vector system

Aw(ν+1) = Bw(ν)

where

A :=









1 + λ −λ
2 0

−λ
2

. . .
. . .

. . .
. . . −λ

2

0 −λ
2 1 + λ









, B :=









1 − λ λ
2 0

λ
2

. . .
. . .

. . .
. . . λ

2

0 λ
2 1 − λ









.

By the theorem of Gerschgorin the eigenvalues of A lie between 1 and 1 + 2λ. So,
zero is no eigenvalue, A is non-singular, and the system of equations has a unique
solution.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 419

3.) Set

A = I + λ
2 G with G :=








2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2








and B = I − λ
2 G .

Then
(2I + λG
︸ ︷︷ ︸

=:C

)w(ν+1) = (2I − λG)w(ν)

= (4I − 2I − λG)w(ν)

= (4I − C)w(ν) ,

which leads to the explicit form

w(ν+1) = (4C−1 − I)w(ν).

By Lemma 1 the stability requirement is
∣
∣
∣
∣

4

µC
k

− 1

∣
∣
∣
∣
< 1 for all k.

By Section 4.2D, the eigenvalues µC
k of C are



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 420

µC
k = 2 + λµG

k = 2 + 4λ sin2 kπ

2m
> 2 .

Hence the method is stable for all λ > 0 (∆τ > 0).

Algorithm (Crank–Nicolson)

start: Choose m, νmax; calculate ∆x,∆τ

w
(0)
i = y(xi, 0) (0 ≤ i ≤ m)

LR-decomposition (or RL-decomposition) of A

loop: for ν = 0, 1, ..., νmax − 1 :

c := Bw(ν) + 0 (preliminary boundary conditions 0)

Solve Ax = c (using the LR/RL-decomposition)

w(ν+1) := x



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 421

4.4 Boundary Conditions

Since the initial conditions are active only for the interval xmin ≤ x ≤ xmax, boundary
conditions

y(x, τ) for xmin and xmax, or
w0,ν and wm,ν for ν = 1, ..., νmax

are needed to make the problem well-posed. These boundary conditions are artificial
and have an influence on the accuracy of numerical solutions.

In the S-world, the GBM assumption for St implies

S(0) = 0 ⇒ St = 0 for all t

S(0) → ∞ ⇒ St large for all t ≤ T.

Hence for all t
VC(S, t) = 0 for S = 0, and

VP(S, t) → 0 for S → ∞ .

We use these boundary conditions as approximation also for Smin ≈ 0 and Smax large.
And for the transformed x-values, provided −xmin = −x0 and xmax = xm are large
enough, as well:



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 422

call: “left” (S = 0) V = 0, i.e. w0,ν = 0 for all ν
put: “right” (S → ∞) V = 0, i.e. wm,ν = 0 for all ν

So far, the argumentation holds for both European and American options. Now we
turn to the question, what are reasonable V -values on the other ends of the interval?

We begin with European options, and apply the put-call parity

VP = VC − Se−δ(T−t) + Ke−r(T−t) .

This yields the boundary conditions at the other ends:

VC(S, t) = Se−δ(T−t) − Ke−r(T−t) for S → ∞
VP(S, t) = Ke−r(T−t) − Se−δ(T−t) for S → 0 .

After the transformation (S, t) → (x, τ) the asymptotic behavior is:

y(x, τ) = r1(x, τ) for x → −∞, y(x, τ) = r2(x, τ) for x → ∞, with

call: r1(x, τ) := 0, r2(x, τ) := exp
(

1
2 (qδ + 1)x + 1

4 (qδ + 1)2τ
)

put: r1(x, τ) := exp
(

1
2 (qδ − 1)x + 1

4 (qδ − 1)2τ
)
, r2(x, τ) := 0

For the finite interval a := xmin ≤ x ≤ xmax =: b, r1, r2 are the dominating terms of
the boundary conditions and can be used as approximations. Accordingly, we choose



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 423

w0,ν = r1(a, τν)

wm,ν = r2(b, τν) .

These boundary conditions are of Dirichlet-type. In the Crank–Nicolson scheme the
boundary conditions lead to the additional terms

−λ

2
w0,ν+1 = −λ

2
r1(a, τν+1)

λ

2
w0,ν =

λ

2
r1(a, τν)

and

−λ

2
wm,ν+1 = −λ

2
r2(b, τν+1)

λ

2
wm,ν =

λ

2
r2(b, τν),

which are represented by the vector

d(ν) :=
λ

2
·









r1(a, τν+1) + r1(a, τν)
0
...
0

r2(b, τν+1) + r2(b, τν)









=
λ

2
·









w0,ν + w0,ν+1

0
...
0

wm,ν + wm,ν+1











Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 424

In the Crank–Nicolson algorithm the right-hand side of the system of equations is now

c := Bw(ν) + d(ν) ;

the matrix A is unchanged:

Aw(ν) = Bw(ν) + d(ν)

We still need to specify the boundary conditions (b.c.) for American-style options
on the “other” side, namely, left-hand b.c. for the put and right-hand b.c. for the call.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 425

4.5 Early-Exercise Structure — Free-Boundary Problems

For a better understanding of American options a further analysis of the solution
structure is helpful.

Basics (for the put under the Black–Scholes model)

a) V (S, t) is continuous, V ≥ 0, and V → 0 for S → ∞.

b) For r > 0 and all t < T

V Eu
P (0, t) = Ke−r(T−t) < K ,

which implies: There is a S∗ = S∗Eu(t) such that V Eu
P (S∗, t) = K − S∗.

(t)fS
S

0

V

possible European option for t<T

possible American option for t<T

payoff function for t=T

K

K



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 426

c) VP is monotonic decreasing w.r.t. S, and convex. [R.C.Merton: Theory of Rational
Option Pricing (1973)]

Hence S∗ is unique.

d) V Am
P ≥ (K − S)+ and V Am

P ≤ K

Assertion 1

Also for the American put with r > 0 there is an S∗ > 0, such that V Am
P (S∗, t) =

K − S∗.

Proof:

Assume: V Am
P > K − S for all S > 0.

Then
−V Am

P + K − S < 0 ,

i.e., exercising the put leads to a loss for all S. Accordingly, early exercise does not
make sense, and hence V Am

P = V Eu
P . Consequently,

V Eu
P = V Am

P > K − S ,

for all S > 0, which contradicts the implication of b).

Redefine S∗ := max{S | V Am(S, t) = K − S .}
By c) and d), V = K − S for all S < S∗.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 427

It remains to investigate the behavior of V for S ≥ S∗.

Assertion 2

The right-hand side derivative of the function V Am
P (S, t) at S∗ has the value −1.

Proof (outline):

We use the notation V := V Am
P .

For the right-hand derivative ∂V (S∗,t)
∂S

< −1 is impossible, because otherwise for

S > S∗ the property d) is violated. Hence ∂V (S∗,t)
∂S

≥ −1.

Assumption:
∂V (S∗, t)

∂S
> −1 .

We lead this to a contradiction as follows:
Build a portfolio: Π := V + S, with initial wealth

Π∗ := V + S∗ .

(= K; borrow from the bank the amount K.) For our GBM

dS = rS dt + σS dW

assume that dt is so small that
√

dt ≫ dt. If dt is small enough, then (intuitively)



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 428

dW > 0 ⇐⇒ dS > 0 .

The Itô-Lemma leads to

dΠ = (. . .)dt +
∂Π

∂S
σS dW

= O(dt) +

(
∂V

∂S
+ 1

)

σS dW.

For dS > 0 this is positive for sufficiently small dt because dW > 0.
For dS < 0 the wealth of the portfolio is Π ≡ K and hence dΠ = 0.

In summary: E(dΠ) > 0, and E(dΠ) is of the order O(
√

dt). Sell the portfolio after
dt and expect the following balance

Π∗ + E(dΠ) − Kerdt = V + S∗ + E(dΠ) − K(1 + O(dt))

= E(dΠ) + O(dt)

This is positive because E(dΠ) dominates, and we have arrived at a contradiction
to the no-arbitrage principle.

Often related proofs use an argument of maximizing the value of the option. In this
way, the perpetual option (an option that does not expire) can be analyzed, see the
Exercises.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 429

In summary, for an American put the following holds:

(1) V (S∗, t) = K − S∗ (Dirichlet b.c.)

(2) ∂V (S∗,t)
∂S

= −1 (Neumann b.c.)
(3) V (S, t) > K − S for S > S∗

(4) V (S, t) = K − S for S ≤ S∗

The property (2) is called high contact, or smooth pasting.

Such an S∗ exists for each t. This defines a function, which we denote Sf(t). The “f”
stands for free boundary.

The curve Sf(t) cuts the half strip into two parts, namely,

1.) S > Sf , called continuation region of the put.

2.) S ≤ Sf , called stopping region of the put.

continuecontinue

T

S

stop

t

T

S

call

stop

t

S (T) S (T)

put

S 

f f

f
S f



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 430

For standard options without dividend payments, these domains are simply connected.
The curve Sf(t) is the interface.

Early-Exercise Curve

The curve Sf(t) is the early-exercise curve by the following reasons:

1.) In case VP > (K − S)+, exercising amounts to −V + K − S < 0. This is a loss.
Consequently, the holder continues to hold the option.

2.) In case the price S passes the curve, S < Sf(t), then immediate exercising makes
sense (“stopping”), because the amount K can be invested, leading for r > 0, t < T
to the profit:

Ker(T−t) − K = K(er(T−t) − 1).

By exercising, the final balance Ker(T−t) is larger than Seδ(T−t), at least for r(T −
t) < 1.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 431

Free-Boundary Problem means:

The Black–Scholes equation is valid only in the continuation region, not in the
stopping region. Hence the domain for the BS equation for an American-style put
is

Sf(t) < S < ∞ .

The left-hand boundary Sf(t) is “free” in the sense that it is unknown initially. It
is calculated numerically, based on the additional boundary condition provided by
the contact condition ∂V

∂S
= −1. This condition fixes the location of Sf(t).

The properties of a call are derived analogously.

Important Properties of the early-exercise curve in case of a put under the Black–
Scholes model (continuous dividend rate δ ≥ 0 allowed, but discrete dividend here
excluded) are:

1.) Sf(t) is continuously differentiable for t < T .

2.) Sf(t) is monotonic increasing.

3.)

Sf(T ) := lim
t→T

t<T

Sf(t) =

{
K für 0 ≤ δ ≤ r
r
δ
K für r < δ



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 432

Proof of 3.) (notation V = V Am
P )

V Am ≥ V Eu implies Sf(t) ≤ S∗eu(t) < K for all t < T . Hence Sf(T ) ≤ K .

Notice that V ≥ Ψ implies
∂V (S, t)

∂t
≤ 0

for t = T . To prepare for some indirect proofs, we first study for Sf(T ) < K how
the BS equation is consistent with the sign of ∂V

∂t
. At t = T and for Sf(T ) < S < K

V (S, T ) = K − S

holds, and the BS equation is

∂V

∂t
+ 0 − (r − δ)S − rV = 0

=⇒ ∂V (S, T )

∂t
= rK − δS .

We will check for which combinations of (δ, r) the sign of ∂V (S,T )
∂t

is consistent with
∂V
∂t

≤ 0.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 433

Case δ > r

Here r
δ
K < K. Then either Sf(T ) = r

δ
K (the assertion), or there exists one of two

open intervals (i) Sf(T ) < r
δ
K and (ii) r

δ
K < Sf(T ).

(i) For S in the interval Sf(T ) < S < r
δ
K we have ∂V (S,T )

∂t
= rK − δS > 0, a

contradiction to
∂V

∂t
≤ 0 .

(ii) For S in the interval r
δ
K < S < Sf(T ) there is a small dt such that (S, T − dt)

is in the stopping area. The inequality rK < δS holds, and thus

K(erdt − 1) < S(eδdt − 1) ,

since S < K. This means that in case of stopping the dividend yield is larger
than the return of investing K at the risk-free rate. Hence early exercise is not
optimal, which is in conflict with the meaning of S < Sf(t).

Hence Sf(T ) = r
δ
K holds in case δ > r.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 434

Case δ ≤ r

Assume Sf(T ) < K. Then for S in the interval Sf(T ) < S < K a contradiction is
obtained from

∂V

∂t
︸︷︷︸

≤0

= rK − δS
︸ ︷︷ ︸

>0

.

For a call with δ > 0 but without discrete dividend:

1.) Sf(t) is continuously differentiable for t < T .

2.) Sf(t) is monotonic decreasing.

3.)

Sf(T ) := lim
t→T

t<T

Sf(t) = max
{

K,
r

δ
K
}

Remark: In case of discrete dividend payment the above assertions must be modified.
In particular, Sf then is not continuous! For example, for an American put early
exercise is not optimal within a certain time interval before ex-dividend date.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 435

4.6 Linear Complementarity

We need a numerical method that does not use the unknown Sf explicitly.

A. Inequality

As argued above, for American options the Black–Scholes equation does not hold in
the entire half strip 0 ≤ t ≤ T, 0 < S, but only in the continuation region. Now, what
happens in the stopping region?

With the notation:

LBS(V ) :=
1

2
σ2S2 ∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV

the Black–Scholes equation can be written

∂V

∂t
+ LBS(V ) = 0 .

For for a put and S < Sf the identity V ≡ Ψ holds, so

V = K − S,
∂V

∂S
= −1 ,

∂2V

∂S2
= 0 ,

∂V

∂t
= 0 ,



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 436

hence
∂V

∂t
+ LBS(V ) = δS − rK .

For S < Sf(T ) we conclude

in case r < δ: S < r
δ
K, hence δS − rK < 0

in case r ≥ δ: δS − rK ≤ r(S − K) < 0 because S < K

and thus
∂V

∂t
+ LBS(V ) < 0 .

For a call the same result follows by analogous arguments.

In summary for all S > 0, 0 ≤ t ≤ T the partial differential inequality

∂V

∂t
+ LBS(V ) ≤ 0

holds, both for put and call.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 437

Overview
put: V Am

P = K − S for S ≤ Sf

V Am
P solves the BS equation for S > Sf

contact condition:
∂V (Sf , t)

∂S
= −1

call: V Am
C = S − K for S ≥ Sf

V Am
C solves the BS equation for S < Sf

contact condition:
∂V (Sf , t)

∂S
= 1

The second derivative of V with respect to S is not continuous at Sf . That is, the
value function V is smooth in the interior of the continuation region, but not on the
entire half strip.

Remark: The transformation of Section 4.1 leads to

∂V

∂t
+ LBS(V ) = −∂y

∂τ
+

∂2y

∂x2
.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 438

B. Formulation with Penalty Term

A unified treatment of ∂V
∂t

+ LBS(V ) ≤ 0 on the entire half strip is possible. To this
end, introduce a suitable function p(V ) ≥ 0 requiring the penalty PDE

∂V

∂t
+ LBS(V ) + p(V ) = 0

to hold. The penalty term p should be 0 in the continuation region, and positive in the
stopping region. The distance to Sf is not known, but the distance V − Ψ of V to the
payoff Ψ is available and is used as control. One example of a penalty function is

p(V ) :=
ǫ

V − Ψ
for a small ǫ > 0 .

Let Vǫ(S, t) denote the solution of the penalty PDE. Two extreme cases characterize
the effect of the penalty term for (S, t) in the continuation area and in the stopping
area:

• Vǫ − Ψ ≫ ǫ implies p ≈ 0. Then essentially the Black–Scholes equation results.

• 0 < Vǫ − Ψ ≪ ǫ implies a large value of p, which means that the BS-part of the
equation is dominated by p. The BS equation is switched off, and Vǫ ≈ Ψ .



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 439

The corresponding branches of the solution Vǫ may be called the “continuation branch”
(p ≈ 0) and the “stopping branch” (Vǫ ≈ Ψ). Obviously these two branches appro-
ximate the true solution V of the Black–Scholes problem. The intermediate range
Vǫ − Ψ ≈ O(ǫ) characterizes a boundary layer between the continuation branch and
the stopping branch. In this layer around the early-exercise curve Sf the solution Vǫ

can be seen as a connection between the BS surface and the payoff plane.a

Remarks: p and the resulting PDE are nonlinear in V . An implementation that
avoids Vǫ ≤ Ψ is not easy; not every choice of ǫ or ∆t will be successful.

Penalty methods are powerful in general. But for the relatively simple situation of
the single-asset American option, a more elegant solution is possible. We shall describe
this approach next.

a This is illustrated in Topic 9, see the Topics for CF on the homepage www.compfin.de;
Topic 9 also also illustrates the penalty function p.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 440

C. Simple Obstacle Problem

Consider an “obstacle” g satisfyingb

g > 0 on a subinterval of − 1 < x < 1, g ∈ C2, g′′ ≤ 0, g(−1) < 0 and g(1) < 0.

g(x)

α β
x

u(x)

1−1

A function u ∈ C1 with minimal length, and with u(−1) = u(1) = 0 and u ≥ g for the
g of the figure can be characterized as follows: There is α, β such that

−1 < x < α : u′′ = 0 (u > g)

α < x < β : u = g (u′′ = g′′ ≤ 0)

β < x < 1 : u′′ = 0 (u > g)

This expresses a complementarity in the sense of

b This and other parts of this chapter were inspired by [P. Wilmott, J. Dewynne,
S. Howison: The Mathematics of Financial Derivatives].



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 441

in case u − g > 0, then u′′ = 0,

in case u − g = 0, then u′′ ≤ 0.

For options, the analogy is

in case V − Ψ > 0, then V̇ + LBS(V ) = 0 ,

in case V − Ψ = 0, then V̇ + LBS(V ) ≤ 0 .

For the simple obstacle problem an equivalent formulation is

Find a function u, such that

u′′(u − g) = 0, −u′′ ≥ 0, u − g ≥ 0, (∗)
u(−1) = u(1) = 0, u ∈ C1[−1, 1].

In this version, α and β do not occur explicitly. After the numerical solution, the values
of α and β will become apparent. The problem (∗) is a linear complementarity
problem (LCP); it has the form

A · B = 0, A ≥ 0, B ≥ 0, for suitable A,B.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 442

For a numerical solution of the simple obstacle problem we use the grid

xi = −1 + i∆x, ∆x :=
2

m
, gi := g(xi) .

This leads to the discrete form of the obstacle problem

(wi−1 − 2wi + wi+1)(wi − gi) = 0,

−wi−1 + 2wi − wi+1 ≥ 0,

wi − gi ≥ 0







for 0 < i < m

with w0 = wm = 0. Correspondingly we define

G :=








2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2








and w :=





w1
...

wm−1



 , g :=






g1
...

gm−1






to rewrite the linear complementarity problem in vector notation:

(w − g)trGw = 0

Gw ≥ 0

w − g ≥ 0









Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 443

D. Complementarity of the Black–Scholes Problem

Specifically for the American put let us formulate the transformed problem

∂y

∂τ
=

∂2y

∂x2
as long as V Am

P > (K − S)+

as LCP. This requires to transform also the side conditions:

V Am
P (S, t) ≥ (K − S)+

= K max{1 − ex, 0}

with q = 2r
σ2 leads to (here specially for δ = 0):

y(x, τ) ≥ exp{1
2
(q − 1)x + 1

4
(q + 1)2τ}max{1 − ex, 0}

= exp{1
4 (q + 1)2τ}max{(1 − ex)e

1

2
(q−1)x, 0}

= exp{1
4 (q + 1)2τ}max{e 1

2
(q−1)x − e

1

2
(q+1)x, 0}

=: g(x, τ).



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 444

It turns out that both the boundary- and the initial conditions can be written with
this g:

y(x, 0) = g(x, 0)

y(xmin, τ) = g(xmin, τ)

y(xmax, τ) = g(xmax, τ)

Now the linear complementarity problem for the American put is written
(

∂y

∂τ
− ∂2y

∂x2

)

(y − g) = 0

∂y

∂τ
− ∂2y

∂x2
≥ 0

y − g ≥ 0







with boundary- and initial conditions as stated above.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 445

This formulation is identical to that one for the general case δ 6= 0, except for an
adapted g:

q =
2r

σ2
, qδ =

2(r − δ)

σ2
,

put: (r > 0) g(x, τ) := exp{1
4 ((qδ − 1)2 + 4q)τ}max{e 1

2
(qδ−1)x − e

1

2
(qδ+1)x, 0}

call: (δ > 0) g(x, τ) := exp{1
4 ((qδ − 1)2 + 4q)τ}max{e 1

2
(qδ+1)x − e

1

2
(qδ−1)x, 0}

Remark: For an American call without dividend and r > 0, t < T , the equality
V Am

C = V Eur
C holds. Proof for δ = 0:

V Am
C ≥ V Eur

C ≥ S − Ke−r(T−t) > S − K

Hence V Am
C >payoff; no early exercise.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 446

4.7 Numerical Realization

A. Discretization

Now we discretize the LCP-problem with the grid from Section 4.2B:

wi,ν+1 − wi,ν

∆τ
= θ

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

∆x2
+

(1 − θ)
wi+1,ν − 2wi,ν + wi−1,ν

∆x2

(“theta method”), with θ = 0 (explicit method), θ = 1
2 (Crank–Nicolson) or θ = 1

(BTCS-method). With the notation λ := ∆τ
(∆x)2

the inequality ∂y
∂τ

− ∂2y
∂x2 ≥ 0 becomes

wi,ν+1 − λθ(wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1)

− wi,ν − λ(1 − θ)(wi+1,ν − 2wi,ν + wi−1,ν) ≥ 0 .
(∗)

Ordering these terms leads to define for the ν-level terms

bi,ν := wi,ν + λ(1 − θ)(wi+1,ν − 2wi,ν + wi−1,ν), for i = 2, . . . ,m − 2.

The boundary conditions are included in b1,ν and bm−1,ν :



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 447

b1,ν := w1,ν + λ(1 − θ)(w2,ν − 2w1,ν + g0,ν) + λθg0,ν+1

bm−1,ν := wm−1,ν + λ(1 − θ)(gm,ν − 2wm−1,ν + wm−2,ν) + λθgm,ν+1 ,

where
gi,ν := g(xi, τν) (0 ≤ i ≤ m, 0 ≤ ν ≤ νmax).

This completes the vector

b(ν) := (b1,ν , . . . , bm−1,ν)tr

and analogously, w(ν), g(ν). With the matrix

A :=








1 + 2λθ −λθ 0

−λθ
. . .

. . .
. . .

. . . −λθ
0 −λθ 1 + 2λθ








∈ IR(m−1)×(m−1)

the problem (∗) is reformulated as

Aw(ν+1) ≥ b(ν) for all ν.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 448

And y − g ≥ 0 reads
w(ν) ≥ g(ν),

and finally
(

∂y
∂τ

− ∂2y
∂x2

)

(y − g) = 0 becomes

(

Aw(ν+1) − b(ν)
)tr (

w(ν+1) − g(ν+1)
)

= 0.

This constitutes the following macro-algorithm:

Algorithm

For ν = 0, 1, ..., νmax − 1 :

compute g := g(ν+1), b := b(ν), as above;

compute w as solution of

Aw − b ≥ 0, w ≥ g, (Aw − b)tr(w − g) = 0. (∗∗)
set w(ν+1) := w

For each time level ν the LCP (∗∗) must be solved. This topic is analyzed next.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 449

Assertion

With the transformation x := w−g and y := Aw− b the LCP (∗∗) is equivalent to

Compute vectors x, y, such that for b̂ := b − Ag the following holds:

Ax − y = b̂, x ≥ 0, y ≥ 0, xtry = 0

(∗ ∗ ∗)
Notice that in this context x, y are general vectors ∈ IRm−1.

Proof: Apply the transformation.

Lemma

The problem (∗ ∗ ∗) has a unique solution.

Proof:

1.) Define

G(x) :=
1

2
xtrAx − b̂trx

with the A from above,



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 450

A = I + λθ








2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2








By Lemma 2 of Section 4.2D the eigenvalues of the matrix A are

µA
k = 1 + λθ4 sin2(kπ/2m) ≥ 1, k = 1, . . . ,m − 1 .

So the symmetric matrix A is positive definite. Differentiating G w.r.t. x yields

Gx = Ax − b̂ , Gxx = A ,

which shows that A is the Hessian matrix of G. For G ∈ C2 recall

G is strictly convex. ⇐⇒ The Hessian matrix of G is positive definite.

Hence the quadratic form G defined above is strictly convex and has a unique
minimum on each convex subset of IRN , N = m − 1. Notice that x ≥ 0 defines a
convex set.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 451

2.) Apply the Theorem of Karush, Kuhn, Tucker (KKT):

For the minimum x∗ of a convex function G under the side conditions Hi(x) ≤ di

for i = 1, . . . , N , where Hi are convex, the following holds: There are yi ≥ 0
such that

∂G(x∗)

∂xj

+ y1
∂H1(x

∗)

∂xj

+ . . . + yN

∂HN (x∗)

∂xj

= 0 (j = 1, . . . , N)

with Hi(x
∗) ≤ di and yi(Hi(x

∗) − di) = 0 for i = 1, . . . , N .
(references include [Stoer & Witzgall], [Strang])

In our application, N = m − 1. Inequality x ≥ 0 or xi ≥ 0 for all i = 1, . . . ,m − 1
leads to di = 0 and Hi(x) = −xi . The Theorem of KKT implies the existence of
y ≥ 0 with

∂G

∂xj

+ yj

∂Hj

∂xj

+ 0 =
∂G

∂xj

− yj = 0

and yixi = 0 for all i. For our special G we conclude

Gx = Ax − b̂ =⇒ Ax − b̂ − y = 0

Hence (∗ ∗ ∗) results from the KKT-Theorem and processes a unique solution. This
then carries over to (∗∗).



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 452

B. Numerical Solution

A direct solution of (∗∗) is possible. Brennan & Schwartz suggest to proceed as follows:

Solve Aw = b componentwise such that

the side condition w ≥ g is obeyed.

This is a somewhat vague outline of an approach: the implementation matters. It is
based on the Gaussian elimination, which in its first phase transforms Aw = b into an
equivalent system Ãw = b̃, so that Ã is a triangular matrix (here bidiagonal). Then,
in the second phase, the above principle of Brennan & Schwartz can be solved with
one loop. When Ã is upper triangular, then this loop to solve Ãw = b̃ is a backward
recursion. For a lower triangle Ã, the loop is forward. If in the ith step of the loop w̃i

denotes the component of the solution of Ãw = b̃, then wi := max{w̃i, gi} appears to
be a realization.

But w depends on the loop’s order. Only one direction works. An implementation
must make sure that the characteristic structure of the option is matched.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 453

For a put this means:

Let if be the index of the node Si that is closest to the contact point∗, where V
touches the payoff. Or more definitely, in the transformed variables,

wi = gi for i ≤ if , and

wi > gi for if < i ≤ m.

This structure is known from the theory, but if is unknown. For the put, w1 = g1

is the starting point, and the wi := max{w̃i, gi}-loop is forward. Hence Ã must be
a lower triangle, which amounts to an RL-decomposition of A. This establishes the
lower triangle Ã := L, and b̃ is solution of Rb̃ = b. The first components of the loop
will be wi = gi, until the first index with wi > gi. This fixes the index if .

Algorithm (put)

1st phase: Calculate the RL-decomposition of A. Then set Ã = L and obtain b̃
from Rb̃ = b (backward loop).

2nd phase: forward loop, start with i = 1. Calculate the next component
of Ãw = b̃; denote it w̃i.
Set wi := max{w̃i, gi}.

∗ provided the chosen interval is large enough, S1 < Sf



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 454

The costs are low (solution of a linear system with tridiagonal matrix). It can be
shown that the above procedure for a standard option with the underlying matrix A
works well.

For a call (δ > 0) one proceeds the other way: The loop starts with wm = gm and
the second phase is a backward loop. To make this possible, in the first phase the
“traditional” LR-decomposition of A establishes an upper triangle Ã = R, and b̃ is
obtained from Lb̃ = b in a foward loop.

Remark on the accuracy:

Since V (S, t) fails to be twice continuously differentiable w.r.t. S at Sf(t), we expect
some bad influence on the accuracy. (Recall that Crank–Nicolson even assumes
y ∈ C4.) But in spite of this lack of smoothness, the Crank–Nicolson approach here
is sufficiently accurate, oscillations diminish rapidly. The lack of smoothness in the
payoff is worse. Even extrapolation works rather well, although the assumptions of
smoothness are not satisfied.



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 455

Outlook

This concludes the introduction in basic Computational Finance. An essential part of
the course are the exercises and the programming assignments.

If this is the material for one semester, then there will be more time left for some
additional topics. (In my course, typically, there are two weeks left.) This additional
material is not included in these course notes, because it will differ from course to
course, depending on the interests and the knowledge of the students. For a textbook
explaining additional material, see [Seydel: Tools for Computational Finance, sixth
Edition (2017)], from which we take the following section numbers. Possible topics
include

• an analytic method: interpolation (§4.8.1), or integral equation (§4.8.4)

• upwind scheme and its relevance (§6.4 – 6.5)

• a penalty method in the two-dimensional case (§6.7)

• case studies, such as the two-dimensional tree method of Exercise 6.2

• jump diffusion (§1.9, §7.3)

and for a two-semester course or an accompanying seminar, one may address

• finite elements (Chapter 5)



Seydel: Course Notes on Computational Finane, Chapter 4 (Version 2015) 456

• nonlinear Black–Scholes problems (§7.1 – 7.2)


