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3. Monte Carlo Methods

Chapter 1 introduced the formula of risk-neutral valuation of European options,

V (S0, 0) = e−rT EQ [Ψ(ST ) | S0] ,

where Ψ(ST ) denotes the payoff. In the Black–Scholes model, specifically, this is

V (S0, 0) = e−rT

∫ ∞

0

Ψ(ST ) · fGBM(ST , T ;S0, r, σ) dST . (Int)

(For the transition density fGBM see Section 1.5D.)

The resulting PDE of the Black–Scholes model will be the topic of Chapter 4. For
general models, such PDEs are not always known, or not easy to solve. In such cases
we need Monte Carlo methods, which can be applied in all cases.
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There are two approaches to calculate the above integral:

1) The integral (Int) is approximated using numerical quadrature.

2) One applies Monte Carlo simulation. That is, one draws random numbers that
match the underlying risk-neutral probability, and calculates many paths of asset
prices St. This is the bulk of the work. To complete, compute the mean of the
payoff values, and discount.

In this chapter we confine ourselves to the second approach.
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Notations (from Chapter 1)

A scalar SDE driven by a Wiener process is described by

dXt = a(Xt, t) dt + b(Xt, t) dWt . (SDE)

We discretize time t with a grid

. . . < tj−1 < tj < tj+1 < . . . ,

with equidistant step h or ∆t = tj+1 − tj . Let yj denote an approximation of Xtj
,

where y0 := X0.

Example: Euler discretization

yj+1 = yj + a(yj , tj)∆t + b(yj , tj)∆Wj ,

tj = j∆t ,

∆Wj = Wtj+1
− Wtj

= Z
√

∆t

with Z ∼ N (0, 1) .

(Euler)
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3.1 Approximation Error

Definition

For a given path of the Wiener processes Wt we call a solution Xt of (SDE) a
strong solution. In case the Wiener process is free, Xt or (Xt,WT ) is called
weak solution.

For strong solutions the numerical discretization is based on the same Wt as the SDE.
This enables to investigate the pathwise difference Xt − yt for convergence behavior
for h → 0.

Notation: We write yh
t for a numerically (with step length h) calculated approxima-

tion y at t, in particular, for t = T .

Definition (absolute error)

For a strong solution Xt of (SDE) and an approximation yh
t the absolute error at

t = T is defined as
ε(h) := E

[
|XT − yh

T |
]

.

For a GBM, where the analytic solution Xt is known, ε(h) can be obtained easily:
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Set in (SDE) a(Xt, t) = αXt and b(Xt, t) = βXt. Then the solution (see Section 1.5D)
for given WT is

XT = X0 exp

[(
α − β2

2

)
T + βWT

]
.

The expectation ε(h) can be estimated as mean of a large number of evaluations of
|XT − yh

T |. For Euler’s method this empirical investigation reveals the error behavior

ε(h) = O(h
1
2 ) ,

which is a low accuracy compared to the deterministic case O(h). The result is plausible
because ∆W is of the order O(

√
h) (in probability), compare Section 1.4.

Definition (strong convergence)

yh
T converges strongly to XT with order γ > 0, if

ε(h) = E
[
|XT − yh

T |
]

= O(hγ) .

yh
T converges strongly if

lim
h→0

E
[
|XT − yh

T |
]

= 0 .
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Example

When a and b satisfy global Lipschitz conditions and bounded growth conditions,
then the Euler discretization converges strongly with order γ = 1

2 .

Note that for several important SDE models (such as CIR, Heston) the global Lipschitz
conditions do not hold. Then modifications of the standard Euler may be necessary,
also to guarantee St ≥ 0.

How about weak solutions?

In many practical situations the individual paths of Xt are not of interest. Instead,
the focus may be on moments of XT . In particular, we would like to know E[XT ] or
Var[XT ], rather than samples of XT . For options, the interest is on E[Ψ(XT )].

Definition (weak convergence)

yh
T converges weakly to XT with respect to a function g with order β > 0, if

E[g(XT )] − E
[
g(yh

T )
]

= O(hβ) ,

and converges weakly with order β, if this holds for all polynomials g.
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Example

When a and b are four times continuously differentiable, the Euler method is weakly
convergent with order β = 1.

Importance of g

In case the convergence order β holds for all polynomials, the convergence of all
moments follows.

Proof (for the first two moments):

(a) For g(x) := x
E[XT ] − E[yh

T ] = O(hβ)

holds, viz, convergence of the mean.

(b) If in addition the convergence order holds for g(x) := x2, then (writing y := yh
T

and X := XT )
∣∣Var[XT ] − Var[yh

T ]
∣∣ =

∣∣E[X2] − E[y2] − (E[X])2 + (E[y])2
∣∣

≤ |E[X2] − E[y2]|︸ ︷︷ ︸
=O(hβ)

+ |E[X] + E[y]|︸ ︷︷ ︸
≤const

· |E[X] − E[y]|︸ ︷︷ ︸
=O(hβ)

,

i.e. convergence of the variance.
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Remark

Strong convergence implies weak convergence with respect to g(x) = x.

Because the properties of integration

| E[X] − E[Y ] | = |E[X − Y ]| ≤ E [ |X − Y | ]

lead to
E [ |X − Y | ] = O(hγ) =⇒ E[X] − E[Y ] = O(hγ) .

Practical advantage of weak convergence:

The increments ∆W needed to calculate yh can be replaced by other random variables
∆̂W with matching first moments. The weak-convergence order survives.

Example

∆̂W := ±
√

∆t, where both signs occur with probability 1/2.
(cheaper to approximate than Z ∼ N (0, 1))

This implies E(∆̂W ) = 0 and E((∆̂W )2) = ∆t (⇒ Var(∆̂W ) = ∆t).

When ∆̂W replaces ∆W one obtains the “simplified Euler method,” which is weakly
convergent with order 1.
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3.2 Constructing Integrators for SDEs

The derivation of integrators for SDEs can be based on the stochastic Taylor expansion.

A. Stochastic Taylor expansion

(follows [P. Kloeden & E. Platen: Numerical Solution of SDEs])
For motivation we first consider the deterministic autonomous case

d

dt
Xt = a(Xt) .

The chain rule for f ∈ C1(IR) tells

d

dt
f(Xt) =

df(X)

dX
· dX

dt
=

df(X)

dX
a(Xt)

= a(Xt)
d

dX
f(Xt) =: Lf(Xt) .

=⇒ f(Xt) = f(Xt0) +

∫ t

t0

Lf(Xs)︸ ︷︷ ︸
=:f̃

ds
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Substitute this formula for
f̃(Xs) := Lf(Xs)

into itself gives

f(Xt) =f(Xt0) +

∫ t

t0

{
f̃(Xt0) +

∫ s

t0

Lf̃(Xz) dz

}
ds

=f(Xt0) + f̃(Xt0)

∫ t

t0

ds +

∫ t

t0

∫ s

t0

Lf̃(Xz) dz ds

=f(Xt0) + Lf(Xt0)(t − t0) +

∫ t

t0

∫ s

t0

L2f(Xz) dz ds .

This is the Taylor expansion with remainder term in integral form, here expanded until
the linear term; the remainder is a double integral. This process can be continued, and
the deterministic Taylor expansion with remainder in integral form results. (All needed
derivatives may exist.)
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stochastic case (Itô-Taylor expansion)

Applying the Itô lemma on f(X) and the autonomous SDE

dXt = a(Xt) dt + b(Xt) dWt

leads to

df(Xt) = {a(Xt)
∂

∂x
f(Xt) +

1

2
(b(Xt))

2 ∂2

∂x2
f(Xt)

︸ ︷︷ ︸
=:L0f(Xt)

} dt + b(Xt)
∂

∂x
f(Xt)

︸ ︷︷ ︸
=:L1f(Xt)

dWt ,

or

f(Xt) = f(Xt0) +
∫ t

t0
L0f(Xs) ds +

∫ t

t0
L1f(Xs) dWs . (∗)

Specifically for f(x) = x, the equation (∗) includes the starting SDE

Xt = Xt0 +

∫ t

t0

a(Xs) ds +

∫ t

t0

b(Xs) dWs .

Now apply (∗) for suitable f̃ , begin with f̃ := a and f̃ := b, and obtain
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Xt = Xt0 +

∫ t

t0

{
a(Xt0) +

∫ s

t0

L0a(Xz) dz +

∫ s

t0

L1a(Xz) dWz

}
ds

+

∫ t

t0

{
b(Xt0) +

∫ s

t0

L0b(Xz) dz +

∫ s

t0

L1b(Xz) dWz

}
dWs .

This can be written

Xt = Xt0 + a(Xt0)

∫ t

t0

ds + b(Xt0)

∫ t

t0

dWs + R ,

with remainder

R =

∫ t

t0

∫ s

t0

L0a(Xz) dz ds +

∫ t

t0

∫ s

t0

L1a(Xz) dWz ds

+

∫ t

t0

∫ s

t0

L0b(Xz) dz dWs +

∫ t

t0

∫ s

t0

L1b(Xz) dWz dWs .

The integrands are

L0a = aa′ +
1

2
b2a′′

L1a = ba′

L0b = ab′ +
1

2
b2b′′

L1b = bb′ .
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Analogously the integrands in the double integrals in R can be replaced, by applying
(∗) with proper f̃ . Thereby, the double integrals

∫ t

t0

∫ s

t0

dz ds

︸ ︷︷ ︸
=:I(0,0)= 1

2
(∆t)2

,

∫ t

t0

∫ s

t0

dWz ds

︸ ︷︷ ︸
=:I(1,0)

,

∫ t

t0

∫ s

t0

dz dWs

︸ ︷︷ ︸
=:I(0,1)

,

∫ t

t0

∫ s

t0

dWz dWs

︸ ︷︷ ︸
=:I(1,1)

occur as factors. I(1, 0), I(0, 1), I(1, 1) are stochastic variables. By a plausibility ar-
gument (replace ∆Ws := Ws − Wt0 by its expectation

√
s − t0 ) expect that I(1, 1)

is the integral of lowest order: O(∆t). We begin with this integral, for f̃ := L1b(X).
From (∗) conclude

∫ t

t0

∫ s

t0

L1b(Xz) dWz dWs = L1b(Xt0)

∫ t

t0

∫ s

t0

dWz dWs + two triple integrals

Then R consists of

R = three double integrals + b(Xt0)b
′(Xt0)︸ ︷︷ ︸

=L1b(Xt0
)

I(1, 1) + two triple integrals
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Calculate the double integral I(1, 1):

Let g(x) := x2 and Xt = Wt, which solves an SDE with a = 0 and b = 1. The Itô
lemma implies

d(W 2
t ) =

1

2
2 dt + 2Wt dWt = dt + 2Wt dWt,

which in turn yields

∫ t

t0

∫ s

t0

dWz dWs =

∫ t

t0

(Ws − Wt0) dWs =

∫ t

t0

Ws dWs − Wt0

∫ t

t0

dWs =

∫ t

t0

1
2

[
d(W 2

s ) − ds
]
− Wt0(Wt − Wt0) =

1
2 (W 2

t − W 2
t0

) − 1
2 (t − t0) − 2

2Wt0(Wt − Wt0) = 1
2 (∆Wt)

2 − 1
2∆t .

This confirms the anticipated order O(∆t) of I(1, 1).

The above derivation of the stochastic Taylor expansion can be continued. This calls for
a systematic definition and notation of the multi-integrals, for example, I(0, 0, 0), ....
In this notation, a “0” stands for a deterministic integration, and a “1” for a stochastic
integration.
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Application

Attach further leading terms of the stochastic Taylor expansion to obtain integra-
tors of higher order.

Example (Milstein method)

yj+1 = yj + a∆t + b∆Wj + 1
2bb′

{
(∆Wj)

2 − ∆t
}

The first terms represent the Euler method, and the last term completes the list of
O(∆t)-terms, and improves the low order of strong convergence to 1. The weak order
is also 1. (This may be checked empirically.)

Question: What does this result mean in view of SDEs with b′ = 0 ?
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B. Positivity

As mentioned before, positive solutions are characteristic for many SDEs in finance.
This should be preserved by numerical approximations. We discuss this topic for the
CIR process, which is part of the Heston model.

Example CIR
dXt = κ(θ − Xt) dt + σ

√
Xt dWt

with κ, θ, σ > 0, X0 = x0 > 0. Positivity of Xt for all t is established by the “Feller
condition”

κθ ≥ 1

2
σ2 ,

which guarantees a strong enough growth rate. We remark in passing that b(X) =
σ
√

X does not satisfy a global Lipschitz condition.

Euler scheme:
yj+1 = yj + κ(θ − yj)∆t + σ

√
yj ∆Wj

with y0 := x0, works as long as yj ≥ 0. There is a positive probability that yj+1 is
negative. When X represents an asset price, an interest rate, or a variance (Heston
model), then y < 0 must be avoided.
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Variants

For example, replace
√

y by
√

|y| or by
√

y+. Then the scheme is defined for all y ∈ IR.
Another variant calculates

yj+1 = | yj + κ(θ − yj)∆t + σ
√

yj ∆Wj | .

Implicit Euler methods can be applied as well, for example, the drift-implicit scheme

yj+1 = yj + a(yj+1)∆t + b(yj)∆Wj .

If this scheme is applied to the SDE of the square root process
√

Xt, then a quadratic
equation for yj+1 results with a unique positive solution (Exercise !). [A. Alfonsi
(2005)]
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3.3 Monte Carlo Methods for European Options

The aim is to calculate the value

V (S0, 0) = e−rT EQ [Ψ(ST ) | S(0) = S0 ]

of a European option, where Ψ denotes the payoff and Q a risk-free probability measure.

A. Basic Principle

The integral of this expectation can be approximated by Monte Carlo methods. The
first decision is the choice of the market model (as Heston- or Black–Scholes model).
Here we focus on the classic Black-Scholes model with GBM,

dSt = St (r dt + σ dWt) .

The procedure is analogous to Monte Carlo quadrature.
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Monte Carlo quadrature

With respect to U [0, 1],
∫ 1

0

f(x) dx =

∫ ∞

−∞
f(x)1[0,1] dx = E(f) .

Applying the law of large numbers, yields

1

N

N∑

k=1

f(xk) −→ E(f) for N → ∞ ,

where xk are independent random uniformly distributed numbers in the domain
D := [0, 1], because 1[0,1] is the corresponding density. Hence the sum

1

N

N∑

k=1

f(xk)

approximates the integral
∫ 1

0
f(x) dx.

For general domains D the approximation is

∫

D
f(x) dx ≈ Vol(D)

N

N∑

k=1

f(xk) .
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The error is probabilistic. The central limit theorem provides related assertions, for
example:

With 95% probabilty the true value of the integral lies in the confidence interval
around the approximate value, which is given by the half width aσ/

√
N . For 95%

probability the parameter a is a = 1.96, and σ is the standard deviation.

So much on MC applied to quadrature. Now the question is, what is the structure of
f when options are to be priced under GBM?

In that case, the density is fGBM, and accordingly the xk must be distributed lognor-
mally.

Algorithm: Monte Carlo Method for European Options

Simulate N paths of the asset price under the risk-neutral measure Q. Each path
starts at S0, and terminates in xk := (ST )k for k = 1, ..., N . Evaluate the payoff
Ψ(ST )

f(xk) := Ψ
(
(ST )k

)
,

calculate the mean, and discount with factor e−rT . Its expectation yields the true
value V as long as f (ST and Ψ) is unbiased.
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Examples of a payoff Ψ

1.) Binary or digital option, e.g., binary call:

Ψ(ST ) = 1ST >K =
{

1 in case ST > K
0 elsewhere

2.) Barrier option with barrier B, e.g. a down-and-out call option with

Ψ(S) =

{
0 in case St ≤ B for a t in 0 ≤ t ≤ T
(ST − K)+ elsewhere

For this path-dependent exotic option the entire path St on 0 ≤ t ≤ T is of interest.
(meaningful for S0 > B > K; illustration in (S, t, V )-space under consideration of
boundary conditions along S = B)

3.) two-asset cash-or-nothing put: The payoff is 1 in case the inequalities S1(T ) < K1

and S2(T ) < K hold, where S1(t), S2(t) denote the prices of the two assets.

Hint: Many analytic solution formulas can be found in [E.G. Haug: Option Pricing
Formulas].
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two-asset cash-or-nothing put; payoff and 1000 MC simulations
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Implementation of the Monte Carlo Method

For the GBM model the true solution

St = S0 exp
{
(r − 1

2σ2)t + σWt

}

can be applied. For options that are not path-dependent this requires only one random
number for each path, for generating WT and ST . For more general models without
analytic solution formula, one must resort to numerical integration (say, with Euler’s
method). Then Monte Carlo consists of two loops: the outer loop of sampling (k =
1, ..., N), and the inner loop of the integration (j = 1, ...,M ; ∆t = T

M
; tj = j∆t).

For path-dependent GBM models, the analytic formula can be applied in a piecewise
fashion,

Stj+1
= Stj

exp
{
(r − 1

2σ2)∆t + σ ∆W
}

for all j, with ∆W =
√

∆tZ , Z ∼ N (0, 1).

Dimension. Monte Carlo methods work in the same way for high-dimensional
problems. The costs are essentially independent on the dimension. This is an important
advantage of Monte Carlo.
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B. Accuracy

a) Denote

µ̂ :=
1

N

N∑

k=1

f(xk) , ŝ2 :=
1

N − 1

N∑

k=1

(f(xk) − µ̂)
2

,

and µ = E(µ̂). According to the central limit theorem, the approximation µ̂ obeys
N (µ, σ2),

P

(
µ̂ − µ ≤ a

σ√
N

)
= F (a),

with distribution function F . In practice σ2 is replaced by its approximation ŝ2. The
error behaves as ŝ√

N
. To reduce this statistical error, either reduce the numerator

(variance reduction), or enlarge the denominator. The latter means to increase the
number of simulations, and is very costly. For example, to gain one additional correct
decimal, the error must be reduced by a factor 1

10 , which amounts to raise the costs
by a factor of 100 = ( 1

10)−2.

b) In several cases, the computation of f(xi) gives rise to another error, namely, the
bias.

Let x̂ be an estimator of the true x that is to be estimated, then the bias is defined
as

bias(x̂) := E[x̂] − x.
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Examples

1.) For a lookback option the payoff involves the variable

x := E

[
max

0≤t≤T
St

]
.

An approximation is
x̂ := max

0≤j≤M
Stj

.

Clearly x̂ ≤ x. Almost surely x̂ underestimates x, i.e. E[x̂] < x. Hence bias(x̂) 6= 0.

2.) Compared to the analytic solution of GBM, the Euler method provides biased
results. For GBM,

Stj+1
= Stj

exp
{
(r − 1

2σ2)∆t + σ ∆W
}

is unbiased, whereas the Euler step

Stj+1
= Stj

(1 + r ∆t + σ ∆W )

is biased.

(Both examples are asymptotically unbiased for M → ∞.)
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To reduce the errors, there are several possibilities, which must be compared for costs
and tradeoffs. Either

• apply variance reduction,

• increase N , or

• reduce the bias (M larger, ∆t smaller),

or apply all these measures. Increasing M and N should be balanced.

The overall error is measured by the mean square error:

Definition (mean square error)

MSE(x̂) := E
[
(x − x̂)2

]
.

As is easily verified,

MSE(x̂) = (E[x̂] − x)
2

+ E
[
(x̂ − E(x̂))2

]

= (bias(x̂))
2

+ Var(x̂) .
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C. Variance Reduction

There are several methods of variance reduction. The simplest is the method of an-
tithetic variates. As for the crude MC, paths are simulated with random numbers
Z1, Z2, . . . Let us denote the MC approximation V̂ . The idea of antithetic variates is
to use in parallel the numbers −Z1,−Z2, . . ., which are also ∼ N (0, 1), to calculate
“mirror paths” S−

t from which the payoff values Ψ(S−
T ) are calculated. This leads to

a second Monte Carlo value V −. By construction, Var(V̂ ) = Var(V −). The effort to
calculate V − is slightly lower than that for Var(V̂ ) because the Z’s are recycled. The
mean

VAV :=
1

2
(V̂ + V −)

satisfies

Var(VAV) =
1

4
Var(V̂ + V −)

=
1

4
(VarV̂ + VarV − + 2Cov(V̂ , V −))

=
1

2
VarV̂ +

1

2
Cov(V̂ , V −)

The anti-symmetric construction of the mirror paths inspires some confidence that the
results are negatively correlated, Cov(V̂ , V −) < 0. This holds in case the dependence
of the output V on the input Z is monotonic. For Cov(V̂ , V −) < 0 the effect is
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Var(VAV) <
1

2
Var(V̂ ) .

This approach at most doubles the costs. In comparison, an error reduction (factor
< 1

2 ) by merely increasing N requires at least fourfold costs.

Example GBM: Let the index k in Vk label the MC simulation, k = 1, . . . , N ,
of GBM. For a payoff Ψ draw Zk ∼ N (0, 1) and calulate the pairs V̂k, V −

k and the
antithetic variate VAV,k as follows (for t0 = 0):

V̂k = Ψ

(
S0 exp

{
(r − σ2

2
)T + σ

√
T Zk

})

V −
k = Ψ

(
S0 exp

{
(r − σ2

2
)T − σ

√
T Zk

})

VAV,k =
1

2
(V̂k + V −

k )

For each k, V̂k and V −
k are dependent, but the independence of Zk ∼ N (0, 1) makes

the VAV,k for k = 1, . . . , N independent, and MC is applied: The mean, discounted
with factor e−rT , approximates V .

Notice that MC has not been developed for the simple vanilla options. The potential
of MC is needed for exotic options, in particular, in high-dimensional situations.
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3.4 Monte Carlo Methods for American Options

A. Stopping Time

Examples of decisions in the financial market include selling an asset, or exercising
an American option. Let us call the decision “stopping,” and the time instant of
the decision “stopping time” τ . Such decisions can only be based on the information
available so far. Accordingly, a stopping time must be non-anticipating: That is, for
any time t one must know whether the decision is made, i.e. whether τ ≤ t or τ > t.

This characterization of a stopping time can be defined formally with the means
of stochastics, building on the underlying process St:

Recall the filtration Ft: A stochastic process St is called Ft-adapted, if St is Ft-
measurable for all t. The natural filtration FS

t is the smallest sigma-algebra over
{Ss | 0 ≤ s ≤ t}, augmented by the P-null sets. St is FS

t -adapted. Filtrations
represent the amount of information available at time t. Hence we require for the
set {τ ≤ t} of all decisions until t

{τ ≤ t} ∈ Ft ,

which is the Ft-measurability of τ .
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Definition (stopping time)

A stopping time τ with respect to a filtration Ft is a random variable with vaalues
in [0, T ] ∪ {∞}, which is Ft-measurable for all t.

The importance of stopping times for American-style options is highlighted by the
following result of Bensoussan (1984):

Let Ψ(St) be a payoff, e.g. Ψ(St) = (K − St)
+.

The value of an American option is

V (S, 0) = sup0≤τ≤T EQ [ e−rτ Ψ(Sτ ) | S0 = S ]

τ stopping time
(∗)

The stopping time τ is with respect to a natural filtration Ft of St.
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Examples of stopping times

1) Define the hitting time
τ := inf { t > 0 | St ≥ β }

for given β > S0. If no such t exists, set τ := ∞.
Clearly, a hitting time is non-anticipating: Setting τ in case of hitting amounts to
set a flag in case of hitting, and for any time t check whether the flag is set.∗

S
0

T

0

S

τ

β

t

2) Define t∗ as the time instant at which max0≤t≤T St is reached. This is no stopping
time! Because for arbitrary t one can not decide whether t∗ ≤ t or t∗ > t.

3) A stopping time is given by

τ := min { t ≤ T | (t, St) ∈ stopping region }

(This is a hitting time for St hitting the early-exercise curve; cf. Section 4.5.)

∗ See [Hunt & Kennedy (2000)] for a formal proof that this τ is stopping time.
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B. Parametric Methods

In (∗) the supremum over all stopping times is taken. Now we construct a special
stopping time. Similar as in Example 1 or 3 we define a curve in the (S, t)-half strip,
which is supposed to approximate the early-exercise curve.

S

0

T

0
S K

τ

t

This defines a special stopping strategy τ̃ by the event of hitting the curve. Assume
that β is a vector of parameters defining the curve. Then the stopping rule and τ̃
depend on β. This special β-depending stopping strategy τ̃ leads to a lower bound

V low(β)(S, 0) := EQ

[
e−rτ̃Ψ(Sτ̃ ) | S0 = S

]
≤ V (S, 0) .

Application: Obviously, V (S, 0) can be approximated via suitable β-defined stop-
ping curves as

supβ V low(β) .
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This idea of an optimal stopping strategy leads to the procedure:

Construct a curve depending on a parameter vector β such that the curve appro-
ximates the early-exercise curve. The stopping strategy is to stop when the path
St crosses the curve defined by β.

S

0

T

0
S K

τ

t

(illustration for a put)

For N such paths evaluate the payoff, and evaluate (approximate) the value V low(β)

as crude MC does.

Next attempt to maximize the lower bound V low(β) by repeating the procedure for
“better” parameters β.
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Example with β ∈ IR1:

Consider a parabola with peak in (S, t) = (K,T ), which is defined by one parameter
β only. As illustrated in the figure, this parabola can be seen as an approximation
of the early-exercise curve of a put. Calculate N paths (e.g. N = 10000) until the
left branch of the parabola (→ τ̃) or t = T is reached. Similar as in Example 1 this
hitting time gives rise to an approximation V low(β). Each evaluation of V low(β) costs
as much as MC for a European option. Then repeat the procedure with a better β.
— This V low(β) will not converge to V (S, 0). A systematic error will remain because
the eary-exercise curve can not be approximated so well with a simple parabola.

S

0

T

0
S K

τ

t

To complete the procedure, one should also construct an upper bound V up.
[P. Glasserman: Monte Carlo Methods in Financial Engineering (2004)]
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C. Regression Methods

Definition (Bermudan option)

A Bermudan option is an option that can be exercised only at a finite number M
of discrete time instances tj .

Specifically for

tj := j ∆t , ∆t :=
T

M
(j = 0, . . . ,M)

we denote the value of a Bermudan option V Be(M). Because of the additional exercise
possibilities,

V Eu ≤ V Be(M) ≤ V Am

holds. One can show
lim

M→∞
V Be(M) = V Am .

For suitable M the value V Be(M) is used as approximation of V Am. The linear con-
vergence suggests working with a few moderate values of M and apply Richardson
extrapolation. In this way, the high costs of Monte Carlo for American options can be
kept at a tolerable level.
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Recall from the binomial method (Section 1.3): The value of an American option is
calculated recursively in a backward fashion, where the continuation values V cont are
defined as European options on a strip, and for each tj

V Am = max
{

Ψ(S), V cont
}

.

Because at each tj the holder of the option decides which of the two possibilities
{exercise, hold} is optimal.∗

For a Bermudan option we define the continuation value at tj analogously:

Cj(x) := e−r∆t EQ

[
V (Stj+1

, tj+1) | Stj
= x

]
.

These functions Cj(x) must be approximated.

∗ principle of dynamic programming
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General Recursion

Set VM (x) ≡ Ψ(x).
For j = M − 1, . . . , 1

construct Cj(x) for x > 0;

Vj(x) := V (x, tj) = max {Ψ(x), Cj(x)} for grid points x .

V0 := V (St0 , t0) = max {Ψ(S0), C0(S0) } .

Below we define special x by a stochastic grid.

To calculate the functions Cj(x) with Monte Carlo, one draws information out of paths

established by simulation, and approximates Cj(x) by a regression curve Ĉj(x).

Regression (basic version)

(a) Simulate N paths S1(t), . . . , SN (t)
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Regression (basic version)

(a) Simulate N paths S1(t), . . . , SN (t): Calculate and store the values

Sj,k := Sk(tj) , j = 1, . . . ,M, k = 1, . . . , N .

Illustration: five trajectories and points (Sj,k, tj) for j = 1, . . . , 5, k = 1, . . . , 5

0

0.2

0.4

0.6

0.8

1

35 40 45 50 55 60 65 70
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Mapping C, illustration for N = 6
The N pairs (k = 1, . . . , N)

(Sj,k , e−r∆tVj+1,k)
constitute the data needed to calculate
the function Ĉj(x).
The mapping

Sj,k −→ Vj+1,k

is illustrated by circular dots.

V
j+1,.

j

j

j+1

t

S

t

V

t j+1

The dashed lines with the squares
illustrate the discounting and the pairs
(Sj,k , e−r∆tVj+1,k), which enter a least squares procedure to generate Ĉj(x).
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Regression (continue)

(b) For j = M set VM,k = Ψ(SM,k) for all k.

(c) For j = M − 1, ..., 1:
Approximate Cj(x) with suitable base functions φ0, ..., φL (e.g. monomials)

Cj(x) ≈
L∑

l=0

alφl(x) =: Ĉj(x)

To this end, apply least-squares minimization on the N points

(Sj,k , e−r∆tVj+1,k) , k = 1, ..., N

to get the coefficients a0, . . . , aL and thus Ĉj .

Evaluation:
Vj,k := max

{
Ψ(Sj,k), Ĉj(Sj,k)

}
.

(d) Set

V0 := max {Ψ(S0), e−r∆t 1

N
(V1,1 + ... + V1,N ) } .
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Costs

The expensive steps are (a) and (c). Step (d) is needed because the algorithm of
(c) can not be applied for j = 0 , since S0,k = S0 for all k. Instead, the mean in (d) is
taken. Convergence of the algorithm was proved.

Based on this regression framework, the algorithm of Longstaff & Schwartz
(2001) is built, as well as the even more efficient algorithm by C. Jonen (2009). In
particular, step (c) offers potential for improvements.

The costs of step (c) of the above algorithm for American options do depend
on the dimension. (Why?) When the entire computing time for pricing an option is
limited, then the dependence of the dimension restricts the achievable accuracy. In
this sense, the error of MC depends on the dimension.
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Supplement to Section 3.4

Longstaff & Schwartz modify the algorithm as follows:

A dynamical-programming principle is incorporated for the optimal stopping times.
Each path has its own stopping time τk for k = 1, ..., N . (It suffices to store the
index k since τk = k∆t.) This algorithm takes advantage of the possibility to work
across several time levels. Due to a modification of C. Jonen [Intern. J. Computer
Math. 86 (2009); PhD 2011] this is an efficient method.

Algorithm

Initialization: τk := M for all k.

For each j = M − 1, ..., 1:

loop over all paths k = 1, ..., N :

In case Ψ(Sj,k) ≥ Ĉj(Sj,k) set τk := j.

Otherwise leave τk unchanged.

For further hints on regression, and on the computation of sensitivities (Greeks), con-
sult [R. Seydel: Tools for Computational Finance]. See also Topic 6 in the Topics for
CF.


