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2. Computation of Random Numbers

Definition (sample from a distribution)

A sequence of numbers is called sample from a distribution function F , if the
numbers are independent realizations of a random variable with distribution F .

Examples

If F is the uniform distribution on the interval [0, 1], then we call the samples from
F uniform deviates. Notation: ∼ U [0, 1].

If F is the standard normal distribution, then we call the samples from F standard

normal deviates. Notation: ∼ N (0, 1).

The basis of random number generation is to draw numbers ∼ U [0, 1].
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2.1 Uniform Deviates

A. Linear Congruential Generators

Choose a, b,M ∈ IN, a 6= 0, a, b < M , and define for N0 ∈ IN (“seed”) a sequence of
numbers by

Algorithm (linear congruential generator)

choose N0 .

For i = 1, 2, ... calculate

Ni = (aNi−1 + b) mod M

Define Ui ∈ [0, 1) by

Ui =
Ni

M
.

The numbers Ui are used as uniform deviates.
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Obvious Properties

(a) Ni ∈ {0, 1, . . . ,M − 1}
(b) The sequence of Ni is periodic with a period p ≤ M .

(because there are not M+1 distinct numbers Ni. Hence two out of {N0, . . . , NM}
must be equal, Ni = Ni+p with p ≤ M . p-periodicity follows.)

Literature: [D.Knuth: The Art of Computer Programming, Volume 2]

The above numbers Ui are no real random numbers, but are deterministically defined
and reproducible. We call such numbers pseudo random. In this chapter, we omit the
modifier “pseudo” because it is clear from the context. The aim is to find parameters
M,a, b such that the numbers Ui are good substitutes of real random numbers.

Example
M = 244944, a = 1597, b = 51749

Useful parameters a, b,M are in [Press et al.: Numerical Recipes].

Question: What are “good” random numbers?

A practical (and hypothetical) answer: The numbers should pass “all” tests.
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First requirement: The period p must be large, hence M as large as possible. For
example, in a binary computer with mantissa length l, one aims at M ≈ 2l. Suitable
a, b can be derived with methods from number theory. [Knuth].

Second requirement: The numbers must be distributed as intended (density f ,
expectation µ, variance σ2). Check this by statistical tests following these lines:
First apply the algorithm to produce a large number of Ui-values. Then

(a) Calculate the mean µ̂ and the variance ŝ2 of the sample. Check µ̂ ≈ µ and ŝ2 ≈ σ2.

(b) Test for correlations of the Ui with previous Ui−j . For example, correlation could
mean that small values of U are likely to be followed again by small values. In this
case the generator would be of low quality.

(c) Estimate the density function f̂ of the sample, and check for f̂ ≈ f . A prototypical
test is this: Divide the unit interval [0, 1] into equidistant subintervals

k∆U ≤ U < (k + 1)∆U ,

where ∆U denotes the length of the subintervals. (For other distributions choose
an interval that contains all sample points Ui, and the subintervals will be defined
accordingly.) When altogether j samples are calculated, let jk be the number of
samples that fall into the kth subinterval. The probability that the kth subinterval
is hit is jk

j . This should approximate



Seydel: Course Notes on Computational Finan
e, Chapter 2 (Version 2015) 205

∫ (k+1)∆U

k∆U

f(x) dx (f = 1 for the uniform distribution) .

This integral is
∆Uf(Ū) ,

with Ū in the kth subinterval. Hence a good generator should satisfy

∆Uf̂(Ū) =
jk

j

!
= ∆Uf(Ū) ,

at least for small ∆U . Hence the empirical density on the kth subinterval is

f̂ =
jk

j∆U
.
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Third requirement:

The lattice structure should be OK.
To check this, arrange vectors out of m
consecutive numbers:

(Ui, Ui+1, . . . , Ui+m−1)

For U ∼ U [0, 1], these points should fill the m-dimensional unit-cube as uniformly
as possible. The sequences of points/vectors lie on (m − 1)-dimensional hyperplanes.
Trivial case: M parallel planes through U = i

M , i = 0, . . . ,M − 1 (any one of the m
components).

A bad situation occurs when all points fall on only a few planes. Then the gaps
between the planes without any points would be wide. This leads to analyze the lattice
structure of the random points. The focus lies on the smallest number of planes, on
which all points in [0, 1)m “land.”

Analysis for m = 2: In this planar case, the hyperplanes in (Ui−1, Ui)-space are
straight lines z0Ui−1 + z1Ui = λ, for parameters z0, z1, λ. From

Ni = (aNi−1 + b) mod M

= aNi−1 + b − kM for kM ≤ aNi−1 + b < (k + 1)M
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conclude for arbitrary numbers z0, z1

z0Ni−1 + z1Ni = z0Ni−1 + z1(aNi−1 + b − kM)

= Ni−1(z0 + az1) + z1b − z1kM

= M (Ni−1
z0 + az1

M
− z1k)

︸ ︷︷ ︸

=:c=c(i)

+z1b

Dividing by M leads to

z0Ui−1 + z1Ui = c + z1bM
−1 ,

a straight line in the (Ui−1, Ui)-plane. For fixed z0, z1 this defines a family of parallel
lines/“planes,” parameterized by c.

Question: Is there a family of such lines (planes) defined by a pair (z0, z1), such that
only few lines (planes) cut the unit-cube? (The minimal number of parallel hyperplanes
holding all points is the worst case.)

For analyzing the number of planes, the cardinality of the c’s matters. To find
the worst case with a small set of c’s, assume z1, z0 ∈ ZZ and z0 + az1 mod M = 0.
Then c ∈ ZZ, and

c = z0Ui−1 + z1Ui − z1bM
−1 ∈ ZZ .
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(z1bM
−1 is a constant parallel shift not affecting the number of planes.) How many

of such c’s exist? For 0 ≤ U < 1 obtain a range for the c’s by a maximal set Ic ⊂ ZZ,
such that

c ∈ Ic ⇒ the line touches or cuts the unit-cube .

The cardinality of the set Ic gives a clue on the distance between the parallel lines
(planes). It is unfavorable when the set consists of only a few elements.

Academic Example Ni = 2Ni−1 mod 11 (i.e. a = 2, b = 0, M = 11)

The pair (z0, z1) = (−2, 1) solves z0 + az1 = 0 mod M .

Hence −2Ui−1 + Ui = c .

 0
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0 ≤ U < 1 implies −2 < c < 1.
In view of c ∈ ZZ, the only parameters
are c = −1 and c = 0. For this choice of (z0, z1)
all 10 points in [0, 1)2 fall on only two
straight lines.

(0 does not occur for N0 6= 11k, k ∈ ZZ.) (Ui−1, Ui)-plane
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Example Ni = (1229Ni−1 + 1) mod 2048

The condition z0 + az1 = 0 mod M

z0 + 1229z1

2048
∈ ZZ

is satisfied by z0 = −1, z1 = 5, because

−1 + 1229 · 5 = 6144 = 3 · 2048 .

c = −Ui−1 + 5Ui − 5
2048 implies −1 − 5

2048 < c < 5 − 5
2048 . Hence the c’s consist

of only six values, c ∈ {−1, 0, 1, 2, 3, 4}, and all points in [0, 1)2 fall on six straight
lines. — The Ui-distance between two neighboring lines is 1

z1

= 1
5 .
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(Ui−1, Ui)-plane.
In this figure,
the discrete points
are not separated.
The sixth line
consists of one point.
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The (Ui−1, Ui)-points of these two examples are obviously not equidistributed. The
next example is fine for m = 2 but shows that the good distribution for m = 2 does
not carry over to higher m.

Example (RANDU)

Ni = aNi−1 mod M, with a = 216 + 3, M = 231

For m = 2 experiments show that the dots (Ui−1, Ui) are nicely equidistributed in
the unit square. For m = 3 it turns out that the random points in the cube [0, 1)3

fall on only 15 planes.

Analysis for larger m is analogous. (−→ Topic 14)
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B. Fibonacci Generators

There are other classes of random-number generators, for example, the Fibonacci
generators. A prototype of such generators is defined by

Ni+1 := Ni−ν − Ni−µ mod M

for suitable µ, ν (also with “+” or with more terms). Literature: [Knuth]

Example
Ui := Ui−17 − Ui−5,

in case Ui < 0 set Ui := Ui + 1.0

This is a simple example with reasonable features, but there are correlations.

The algorithm has a “leg” with length 17. This requires an initial phase that provides
17 U -values to start the algorithm.
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Algorithm (loop of a simple Fibonacci generator)

Repeat: ζ := Ui − Uj

in case ζ < 0, set ζ := ζ + 1

Ui := ζ

i := i − 1 , j := j − 1

in case i = 0, set i := 17

in case j = 0, set j := 17

Initialization: Set i = 17, j = 5, and calculate U1, . . . , U17 with a congruential gene-
rator with, for example, M = 714025, a = 1366, b = 150889.

A professional generator to calculate uniform random numbers is the “Mersenne
Twister” by Matsumoto, Nishimura, in: ACM Transactions on Modelling and Com-
puter Simulations 8 (1998), p.3-30. This generator has excellent features with a huge
period, and enables equidistributed points even in high dimensions m.
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10000 random numbers
(Ui−1, Ui), calculated with
a Fibonacci Generator
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2.2 Random Numbers from Other Distributions

The generation of all kind of deviates is based on uniform deviates. For the calculation
of random numbers from a given distribution we can apply several methods, namely,
inversion, transformations, and rejection methods.

A. Inversion

Let F (x) := P(X ≤ x) be a distribution function, for a random variable X, and P is
the corresponding probability.

Theorem (inversion)

Suppose U ∼ U [0, 1] and let F be a continuous strictly increasing distribution
function. Then X := F−1(U) is a sample from F .

Proof:

U ∼ U [0, 1] means P(U ≤ ξ) = ξ for 0 ≤ ξ ≤ 1. Hence

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).
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Application

Calculate u ∼ U [0, 1] and evaluate F−1(u). These numbers have the desired distri-
bution. Mostly inversion is done numerically because F−1 in general is not known
analytically.

There are two variants:

(a) F (x) = u is a nonlinear equation for x, which can be solved iteratively with
standard methods of numerical analysis (e.g. Newton method). For the normal
distribution (Figure) the iteration requires tricky termination criteria, because
for u ≈ 0, u ≈ 1 small perturbations in u lead to large perturbations in x.

u=F(x)
1/2

x

1

u

(b) Construct an approximating function G such that G(u) ≈ F−1(u). Then only
x = G(u) needs to be evaluated. The construction of G must observe the
asymptotic behavior, which amounts to the poles of G. For the standard normal
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distribution the symmetry w.r.t. (x, u) = (0, 1
2
) can be exploited and only the

pole for u = 1 needs to be observed. This can be done with a rational function
G(u), with a denominator having a zero at u = 1.

B. Transformation

We begin with the scalar case: Let X be a random variable. What is the distribution
of a transformed h(X)?

Theorem (scalar transformation)

Suppose X is a random variable with density function f and distribution function
F . Further assume

h : S → B

with S,B ⊆ IR, where S is the support of f , and let h be strictly monotonic.

(a) Y := h(X) is random variable with distribution function

F (h−1(y)) for increasing h

1 − F (h−1(y)) for decreasing h
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(b) If h−1 is absolutely continuous, then for almost all y the density of h(X) is

f(h−1(y))

∣
∣
∣
∣

dh−1(y)

dy

∣
∣
∣
∣
.

Proof: (write also F X for F )

(a) F Y (y) := P(h(X) ≤ y) =

(in case h is increasing:)

= P(X ≤ h−1(y)) = F X(h−1(y))

(in case h is decreasing:)

= P(X ≥ h−1(y)) = 1 − P(X < h−1(y)) = 1 − F X(h−1(y))

(b) For absolutely continuous h−1 the density of Y = h(X) is equal to the derivative

of the distribution function almost everywhere. Evaluation of dF (h−1(y))
dy with the

chain rule implies the assertion; distinguish between increasing and decreasing h.
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Application

Start with X ∼ U [0, 1] and the density of the uniform distribution,

f(x) =

{

1 for 0 ≤ x ≤ 1

0 elsewhere

i.e. S = [0, 1]. Random numbers Y with prescribed target density g(y) are to be
calculated. Hence we require a transformation h such that

f(h−1(y))

∣
∣
∣
∣

dh−1(y)

dy

∣
∣
∣
∣
= 1

∣
∣
∣
∣

dh−1(y)

dy

∣
∣
∣
∣

!
= g(y) .

Then h(X) is distributed as intended.

Example (exponential distribution)

The exponential distribution with parameter λ > 0 has the density

g(y) =

{

λe−λy for y ≥ 0

0 for y < 0.

B consists of the non-negative real numbers. As transformation [0, 1] → B we
choose the monotonic decreasing function
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y = h(x) := − 1

λ
log x

with inverse h−1(y) = e−λy for y ≥ 0. Since

f(h−1(y))

∣
∣
∣
∣

dh−1(y)

dy

∣
∣
∣
∣
= 1 ·

∣
∣(−λ)e−λy

∣
∣ = λe−λy = g(y) ,

h(X) is distributed exponentially as long as X ∼ U [0, 1].

Application

Calculate U1, U2, . . . ∼ U [0, 1]. Then

− 1

λ
log(U1), − 1

λ
log(U2), ... are distributed exponentially.

(Hint: The distances between jump times of Poisson processes are distributed expo-
nentially.)

Attempt with the normal distribution: Search for h such that

1 ·
∣
∣
∣
∣

dh−1(y)

dy

∣
∣
∣
∣
=

1√
2π

exp

(

−1

2
y2

)

.

This is a differential equation for h−1 without analytic solution. In this situation the
multidimensional version of the transformation helps.



Seydel: Course Notes on Computational Finan
e, Chapter 2 (Version 2015) 220

Theorem (transformation in IRn)

Suppose X is a random variable in IRn with density f(x) > 0 on the support
S. Let the transformation h : S → B, S,B ⊆ IRn be invertible and the inverse
continuously differentiable on B. Then Y := h(X) has the density

f(h−1(y))

∣
∣
∣
∣

∂(x1, . . . , xn)

∂(y1, . . . , yn)

∣
∣
∣
∣
, y ∈ B, (2.7)

where ∂(x1,...,xn)
∂(y1,...,yn) denotes the determinant of the Jacobian matrix of h−1(y).

Proof: see Theorem 4.2 in [L.Devroye: Non-Uniform Random Variate Generation
(1986)]

In Section 2.3 the two-dimensional version will be applied to calculate normal variates.
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C. Acceptance-Rejection Method

This method is based on the following facts: Let f be a density function on S ⊂ IR
and Af the area between the x-axis and the graph of f . Assume two random variables
U and X independent of each other with U ∼ U [0, 1] and X distributed with density
f . Then the points

(x, y) := (X, U · f(X))

are uniformly distributed on Af (and vice versa). In the Figure this is illustrated for
the normal distribution. If one cuts off a piece of the area Af , then the remaining
points are still distributed uniformly. This is exploited by rejection methods.

Let g be another density on S, and assume for a constant c ≥ 1

f(x) ≤ c g(x) for all x ∈ S .

The function cg is major to f , and the set Af is subset of the area Acg underneath
the graph of cg. The rejection algorithm assumes that g-distributed x-samples can be
calculated easily. Then the points (x, ucg(x)) are distributed uniformly on Acg. The
aim is to calculate f -distributed random numbers. Cutting off the part of Acg above
Af means to reject points with ucg(x) > f(x). The x-coordinates of the remaining
points with ucg(x) ≤ f(x) are accepted and are distributed as desired.
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X ∼ N (0, 1)
U ∼ U [0, 1]
f density of X
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Algorithm (rejection method)

Repeat:

x := random number distributed according to g,

u := random number ∼ U [0, 1] independent of x

until u c g(x) ≤ f(x)

return: x

Example (as exercise): Laplace-density g(x) := 1
2 exp(−|x|), f density of the standard

normal distribution. What is c?∗

∗ colored in Topic 3 of the Topics for CF
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2.3 Normal Deviates

This section applies the transformation theorem in IR2 to the calculation of normally
distributed random numbers, and sketches the ziggurat method.

A. Method of Box and Muller

S := [0, 1]2, X distributed normally on S with density f = 1 on S. Transformation h:
{

y1 =
√

−2 log x1 cos 2πx2 =: h1(x1, x2)

y2 =
√

−2 log x1 sin 2πx2 =: h2(x1, x2)

inverse h−1: 





x1 = exp
{
−1

2 (y2
1 + y2

2)
}

x2 =
1

2π
arctan

y2

y1

For this transformation the determinant is

∂(x1, x2)

∂(y1, y2)
= det

( ∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

)

=

= − 1

2π
exp

{
−1

2 (y2
1 + y2

2)
}

.
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Its absolute value is the density of the two-dimensional normal distribution. Since
∣
∣
∣
∣

∂(x1, x2)

∂(y1, y2)

∣
∣
∣
∣
=

[
1√
2π

exp
(
−1

2y2
1

)
]

·
[

1√
2π

exp
(
−1

2y2
2

)
]

,

the two-dimensional density is the product of the one-dimensional densities of the
standard normal distribution. As a consequence, the two components y1, y2 of the
vector Y are independent.

Application

When the two components x1, x2 are distributed ∼ U [0, 1], then the transformation
provides two independent y1, y2 ∼ N (0, 1).

Algorithm (Box-Muller)

(1) generate U1 ∼ U [0, 1] and U2 ∼ U [0, 1].

(2) θ := 2πU2, ρ :=
√−2 log U1

(3) Z1 := ρ cos θ is ∼ N (0, 1)

(same as Z2 := ρ sin θ).
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B. Variant of Marsaglia

Prepare the input x1, x2 for the Box–Muller transformation such that trigonometric
functions are avoided. From U ∼ U [0, 1] obtain V := 2U − 1 ∼ U [−1, 1]. Two such
numbers V1, V2 define a point in IR2. Define the disk

D := {(V1, V2) : V 2
1 + V 2

2 < 1}.

Accept only those pairs (U1, U2) such that (V1, V2) ∈ D. These accepted points are
uniformly distributed on D. Transformation to (radius)2 and normalized angle:

(
x1

x2

)

=

(
V 2

1 + V 2
2

1
2π arg (V1, V2)

)

.

These (x1, x2) are distributed uniformly in S (−→ exercise) and serve as input for
Box&Muller. The advantage is:

cos(2πx2) =
V1

√

V 2
1 + V 2

2

, sin(2πx2) =
V2

√

V 2
1 + V 2

2
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Algorithm (polar method)

(1) Repeat: generate U1, U2 ∼ U [0, 1];

V1 := 2U1 − 1, V2 := 2U2 − 1;

until w := V 2
1 + V 2

2 < 1.

(2) Z1 := V1

√

−2 log(w)/w is ∼ N (0, 1)

( as well as Z2 := V2

√

−2 log(w)/w ).

The probability of acceptance (w < 1) is the ratio of the areas π
4

≈ 0.785....
That is, 21% of all draws (U1, U2) are rejected. But these costs are compensated by
the saving of trigonometric functions, and Marsaglia’s polar method is more efficient
than standard Box&Muller.
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C. Ziggurat Algorithm

A most efficient algorithm for the generation of normal deviates is the ziggurat algo-
rithm, which is a acceptance-rejection method.

Essentially, g is a step function ≥ the Gaussian density f . Construction with
N horizontal layers of N − 1 rectangles with the same area, and one bottom segment
with the same area, which is no rectangle but infinite because of the tail of f . The
figure illustrates schematically a situation for x ≥ 0, where the rectangle consists of
two portions (for each i with 0 < i < N−1), which make an extremely efficient test for
acceptance possible (random choice of the layer i; uniformly distributed test point).

xx i+1 i
x

f(x)
y

yi
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2.4 Correlated Normal Random Variates

The aim is the generation of a normal random vector X = (X1, . . . ,Xn) with prescri-
bed

µ = EX = (EX1, . . . ,EXn),

covariance matrix with elements

Σij = (CovX)ij := E ((Xi − µi)(Xj − µj)) ; σ2
i = Σii

and correlations

ρij :=
Σij

σiσj
.

For the following assume that Σ is symmetric and positive definite.

Recall: The density function f(x1, . . . , xn) of N (µ,Σ) is

f(x) =
1

(2π)n/2

1

(det Σ)1/2
exp

{

−1

2
(x − µ)trΣ−1(x − µ)

}

.
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Assume Z ∼ N (0, I), where I is the unit matrix.

Apply a linear transformation x = Az, A ∈ IRn×n, where z is a realization of Z
and A is nonsingular. Then

AZ ∼ N (0, AAtr)

This follows from the transformation theorem in Section 2.2B, with X = h(Z) := AZ.
The density of X is

f(A−1x) |det(A−1)| =
1

(2π)n/2
exp

{

−1

2
(A−1x)tr(A−1x)

}
1

|det(A)|

=
1

(2π)n/2

1

|det(A)| exp

{

−1

2
xtr(AAtr)−1x

}

for arbitrary nonsingular matrices A. In case AAtr is a factorization of Σ, Σ = AAtr,
and hence |det A| = (det Σ)1/2, we conclude:

AZ ∼ N (0, Σ) .

Translation with vector µ implies

µ + AZ ∼ N (µ,Σ) .

Example: Choose the Cholesky decomposition of Σ.
Alternative: decomposition out of a principal component analysis.
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Algorithm (correlated normal deviates)

(1) Decompose Σ into AAtr = Σ

(2) Draw Z ∼ N (0, I) componentwise

with Zi ∼ N (0, 1) for i = 1, ..., n, for example,

with Marsaglia’s polar method

(3) µ + AZ is distributed ∼ N (µ,Σ)

Example: If Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)

is required, the solution is

(
σ1Z1

σ2ρ Z1 + σ2

√

1 − ρ2 Z2

)

.
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2.5 Sequences of Numbers with Low Discrepancy

The aim is to construct points distributed similarly as random numbers, but avoid clus-
tering or holes. In order to characterize equidistributedness, take any box (hyper-
rectangle) in [0, 1]m, m ≥ 1. It would be desirable if for all Q

# of the xi ∈ Q

# all points in [0, 1]m
≈ vol(Q)

vol([0, 1]m)

0
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Q

For m = 2 the figure illustrates this idea in the unit square [0, 1]2.



Seydel: Course Notes on Computational Finan
e, Chapter 2 (Version 2015) 233

Definition (discrepancy)

The discrepancy of a set {x1, . . . , xN} of N points xi ∈ [0, 1]m is

DN := sup
Q

∣
∣
∣
∣

# of the xi ∈ Q

N
− vol(Q)

∣
∣
∣
∣
.

We wish to find sequences of points, whose discrepancy DN for N → ∞ tends to zero
“quickly.” To assess the decay we compare with the sequence

1√
N

,

which characterizes the probabilistic error of Monte Carlo methods. For true random
points the discrepancy has a similar order of magnitude, namely,

√

log log N

N
.
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Definition (sequence of low discrepancy)

A sequence of points x1, . . . , xN , . . . ∈ [0, 1]m is called low-discrepancy sequence if
there is a constant Cm such that for all N

DN ≤ Cm
(log N)m

N
.

Comment

The denominator in 1
N stands for relatively rapid decay of DN with the number of

points N , rapid as compared with the 1√
N

of Monte Carlo.

But we have to observe the numerator (log N)m. Since log N grows only modestly,
for low dimension m the decay of DN is much faster than the decay of the proba-
bilistic Monte Carlo error.
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Table: different convergence rates to zero

N 1√
N

√
log log N

N
log N

N
(log N)2

N
(log N)3

N

101 .31622777 .28879620 .23025851 .53018981 1.22080716
102 .10000000 .12357911 .04605170 .21207592 .97664572
103 .03162278 .04396186 .00690776 .04771708 .32961793
104 .01000000 .01490076 .00092103 .00848304 .07813166
105 .00316228 .00494315 .00011513 .00132547 .01526009
106 .00100000 .00162043 .00001382 .00019087 .00263694
107 .00031623 .00052725 .00000161 .00002598 .00041874
108 .00010000 .00017069 .00000018 .00000339 .00006251
109 .00003162 .00005506 .00000002 .00000043 .00000890

Do sequences of low discrepancy exist?

Example: (m = 1) Van der Corput sequence

1

2
,

1

4
,
3

4
,

1

8
,
5

8
,
3

8
,
7

8
,

1

16
, . . .

Let us study its construction by means of the example x6 = 3
8 . The binary represen-

tation of the index 6 is 110. This is radix-inverted: .011, which gives 3
8 .



Seydel: Course Notes on Computational Finan
e, Chapter 2 (Version 2015) 236

Definition (radical-inverse function)

For i = 1, 2, ... let

i =

j
∑

k=0

dkbk

be the expansion in base b (integer ≥ 2), with dk ∈ {0, 1, . . . , b − 1}. The radical-
inverse function is defined by

φb(i) :=

j
∑

k=0

dkb−k−1 .

A one-dimensional example is the Van der Corput sequence: xi := φ2(i).

Definition (Halton sequence)

Let p1, . . . , pm be pairwise prime integers. The Halton sequence is defined as the
sequence of vectors

xi := (φp1
(i), . . . , φpm

(i)) , i = 1, 2, ...

The Halton sequence is of low discrepancy with C2 = 0.2602 for m = 2 and easy to
generate.
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Other sequences of low discrepancy:

· Faure sequence

· Sobol sequence

· Niederreiter sequence

· Halton “leaped”: For large m the Halton sequence suffers from correlation. This
can be cured taking

xi := (φp1
(li), . . . , φpm

(li)) , i = 1, 2, ...

for suitable prime l different from the pk, for example, l = 409.

The deterministic sequences of low discrepancy are called quasi-random numbers.
(They are not random!)

Literature on quasi-random numbers: [H. Niederreiter: Random Number Generation
and Quasi-Monte Carlo Methods (1992)]
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The figure shows the first
10000 Halton points
with m = 2
and p1 = 2, p2 = 3.


