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1. Modeling of Financial Options

1.1 Options

Definition (Option)

An option is the right (but not the obligation) to buy or sell a risky asset at a
prespecified fixed “strike” price K until a maturity time T .

The terms of the option contract are fixed by the writer. The holder of the option pays
a premium V for its purchase.

Exercising the option means to buy or sell the underlying asset for the price K accor-
ding to the option’s contract. An option with the right to buy the underlying is called
call, and the option to sell is called put.

Question: What is the fair premium V ?

This depends on the price K, on the price S0, on T , and on market data such as
the rate r or the volatility σ.
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The volatility σ measures the size of fluctuations of the asset price St, and hence
indicates the risk.

A European option can only be exercised at maturity (t = T ); an American option
can be exercised anytime during the life time 0 ≤ t ≤ T .

The value of the premium V at maturity is easy to assess: it is the payoff.

1. Call in t = T

The holder of the option has two alternatives to acquire the asset:

(a) She buys it on the spot market and pays ST , or

(b) exercises the call option and pays the strike price K.

The rational holder optimizes her position.

1st case: ST ≤ K ⇒ The holder pays ST on the spot market, and lets the option
expire. Then the option is worthless, V = 0.

2nd case: ST > K ⇒ The holder exercises the call and pays K. And immediately
she sells the asset for the spot price ST . The profit is ST −K, hence V = ST −K.
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In summary, the payoff of a call is

V (ST , T ) =

{
0 in case ST ≤ K

ST − K in case ST > K

= max {ST − K, 0} =: (ST − K)+

2. Put in t = T

Analogous reasoning leads to the payoff of a put:

V (ST , T ) =

{
K − ST in case ST ≤ K

0 in case ST > K

= max {K − ST , 0} =: (K − ST )+

S

V

K S

V

K

K

Payoff of a call (left) and of a put (right), in t = T .
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The same arguing is valid for American-style options for any t ≤ T : the payoffs are

put: (K − St)
+

call: (St − K)+

The value V for t < T , in particular for t = 0, is more difficult to determine. The
no-arbitrage-principle plays a central role. This mere principle leads to bounds for V .
We give some examples.

The value V (S, t) of an American option can not be smaller than the payoff, because
(proof for a put; call is analogous):

Obviously V ≥ 0 for all S. Assume: S < K and 0 ≤ V < K−S. Establish arbitrage
as follows: Buy the asset (−S) and the put (−V ), and exercise immediately: (+K).
By K > S + V this is a risk-free profit K − S − V > 0, which contradicts the
no-arbitrage-principle.

Hence
V Am

Put (S, t) ≥ (K − S)+ ∀S, t .

Analogously:
V Am

Call(S, t) ≥ (S − K)+ ∀S, t .

Also the inequality
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V Am ≥ V Eu

holds since an American option embraces the European option. When no dividend is
paid, the put-call parity

S + VPut = VCall + Ke−r(T−t)

holds for European-style options. This leads to
further bounds, for example, to

V Eu
Put ≥ Ke−r(T−t) − S.

The figure illustrates the a-priori bounds for
European options on assets that pay no dividends
for 0 ≤ t ≤ T (for r > 0).

V

call

K S

V

put

K

K S
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Definition (historic volatility)

The historic volatility σ is the standard deviation of St. It is scaled by 1√
∆t

since

the data are returns sampled at ∆t. In reality, σ is not constant, but the classic
Black–Scholes-model takes it as constant. The empirical determination of market
parameters (such as σ) is an ambitious task (calibration).

Notice that each option involves three prices, namely, the price St of the underlying
asset, the strike price K and the premium V of the option.

Definition

Options with the above payoffs Ψ(S) := (K −S)+ or Ψ(S) := (S−K)+ on a single
asset are called standard options, or vanilla options. There are many other kinds
of options with other features. These other types of options are called exotic.

Examples of exotic options

Basket: The underlying is a basket of several assets, e.g.,
∑m

i=1 wiSi(t), where Si

is the market price of the ith asset, m > 1.

Options with other payoffs, such as the binary put with

payoff =

{

0 in case St > K

1 in case St ≤ K.
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Path dependence: For instance, the payoff ( 1
T

∫ T

0
S(t) dt−K)+ involves the average

value, which depends on the path of S(t) (average price call).

Barrier: For instance, an option ceases to exist when St reaches a prespecified
barrier B.

On the Geometry of options

The values V (S, t) obey the bounds sketched above, see the illustration of an American
put. V (S, t) can be interpreted as surface (figure: in green) over the half strip 0 ≤ t ≤
T, S > 0. This V (S, t) is called value function. At the early-exercise curve, the surface
merges in the plane defined by the payoff.

K

K

T

0

t

S

V
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Importance: When the market price St reaches this (blue) curve, immediate exercise
is optimal: invest K for the interest rate r. The situation is sketched in an (S, t)-plane
for an American put that pays no dividend.

t

T

0

S
KS

0

For American call options with dividend payment the situation is analogous. The
geometry at early-exercise curves will be discussed in Chapter 4. The curve must be
calculated numerically.
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1.2 Mathematical Model

A. Black–Scholes Market

Here we discuss mathematical models of how paths St may behave. We list some
assumptions, which essentially go back to Black, Scholes and Merton (1973, Nobel-
Prize 1997). These classic assumptions lead to a partial differential equation (PDE),
the famous Black–Scholes equation:

∂V

∂t
+

1

2
σ2 S2 ∂2V

∂S2
+ r S

∂V

∂S
− r V = 0

This equation is a symbol representing the classic theory. Each solution V (S, t) of a
European standard option must solve this PDE, satisfying for t = T the terminal
condition V (S, T ) = Ψ(S) where Ψ denotes the payoff.
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Assumptions of the Model

1. There is no arbitrage.

2. The market is frictionless. That is, there are no transaction costs, and rates for
lending and borrowing money are equal. All variables are perfectly divisible (∈ IR).
And individual trading does affect the market price.

3. The price St follows a geometric Brownian motion (explained later).

4. Technical assumptions:

r and σ are constant for 0 ≤ t ≤ T . No dividends are paid in 0 ≤ t ≤ T .

Provided these assumptions hold (some can be weakened), the value function
of a European standard option solves the Black–Scholes equation. Hence a
possible approach to price a European option is to solve the Black–Scholes equation.
There is an analytical solution; this is given at the end of this chapter (with δ a
continuous dividend rate).

The above model of a finance market is the classic approach; there are other market
models.
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The model with its geometric Brownian motion (Section 1.5) is a continuous-time
model, t ∈ IR. There are also discrete-time models, which consider only discrete time
instances. Other market models do not use the geometric Brownian motion. Such
models are mainly working with jump processes.

Numerical Tasks:

• Computation of V (S, t), in particular for t = 0, with early-exercise curve for Ame-
rican options,

• Computation of sensitivities (“Greeks”), such as ∂V (S,0)
∂S

,

• Calibration, which means to estimate parameters that match empirical data.

B. Risk-Neutral Probabilities (One-Period Model)
Assumptions: 0 < d < u, and the situation of the figure below. There are only

two time instances: 0, T , and two possible future asset prices S0d, S0u. V0 denotes the
(unknown) value of the option “today” for t = 0, and S0 is the current value of the
asset.
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T

0

t

V V (u)

S

V

(d)

S

S S u0 0d

0

0
Consider a portfolio with two positions:

1. ∆ shares of the asset

2. a short position of one option written on the asset

With Πt denoting the wealth function, the value Π0 of the portfolio at the time 0 is

Π0 = S0 ∆ − V0 .

The number ∆ is to be determined. At time T the value of the underlying is “up” or
“down” and the portfolio is

Π(u) = S0u∆ − V (u)

Π(d) = S0d∆ − V (d) .

V (u) and V (d) are fixed by the payoff. Choose ∆ such that the portfolio becomes
riskless at time T . That is, the value of the portfolio should be the same, no matter
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whether the market price goes “up” or “down”,

Π(u) = Π(d) =: ΠT .

Consequently,
S0∆(u − d) = V (u) − V (d)

or ∆ =
V (u) − V (d)

S0u − S0d
.

With this special value of ∆ the portfolio is riskless. Invoking the no-arbitrage prin-
ciple, we conclude: Any other risk-free investment must have the same value, because
otherwise arbitrageurs would make a riskless profit by exchanging the investments.
Hence: ΠT = Π0 erT

An elementary calculation shows

V0 = e−rT
(

V (u)q + V (d)(1 − q)
)

with q := erT−d
u−d

. This formula has the structure of an expectation. In case 0 < q < 1

(this requires d < erT < u, a condition guaranteeing absence of arbitrage∗), then this
q induces a probability Q, and

∗ What are the arbitrage strategies in case d ≥ erT or erT ≥ u ?
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V0 = e−rT EQ[VT ]

[Recall that in a discrete probability space with a probability P

EP[X] =

n∑

i=1

xi P(X = xi)

holds, where X is a random variable.] The special probability Q defined above is called
risk-neutral probability. For S0 we have

EQ[ST ] =
erT − d

u − d
︸ ︷︷ ︸

=q

S0u +
u − erT

u − d
︸ ︷︷ ︸

=1−q

S0d = S0e
rT ,

or

S0 = e−rT EQ[ST ] .
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Summary:

In case the portfolio is risk-free (achieved by the above special value of ∆) and

when 0 < q < 1 with q = erT −d
u−d

, then there is a probability Q, such that

V0 = e−rT EQ[VT ] and

S0 = e−rT EQ[ST ] .

The quantity ∆ is called Delta. Later we shall see ∆ = ∂V
∂S

in the time-continuous
situation. This is the first and most important example of the “Greeks”, others are
∂2V
∂S2 , ∂V

∂σ
, ...

∆ is the key for “Delta-Hedging”, for minimizing or eliminating the risk of the
writer of an option.

Remark: The relation
e−rT EQ[ST ] = S0

for all T is the martingale property of the discounted process e−rtSt with respect to
the probability Q.



Seydel: Course Notes on Computational Finan
e, Chapter 1 (Version 2015) 16

1.3 Binomial Method

For the numerical pricing of options, the continuous time must be discretized. Among
the many possible approaches the tree methods have the reputation to be both simple
and robust. The simplest version uses a binomial tree. The Black–Scholes model results
in the limit when the fineness of the binomial tree goes to zero.

−

t i+1

t i

Si+1

Si

t+ ∆t

p1−p

SuSd

t

S

t

S

Define an equidistant time discretization:

M : number of time steps
∆t := T

M

ti := i · ∆t, i = 0, ...,M
Si := S(ti)

On the Si-axes we shall define discrete Sj,i-values.
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Assumptions

(Bi1)The market price over one period ∆t can only take two values,

Su or Sd with 0 < d < u.

(Bi2)Let the probability of an “up” motion be p, P(up) = p, with 0 < p < 1.

(Bi3)Expectation and variance equal those of the continuous-time model (for geometric
Brownian motion St with riskless growth rate r).

(Bi1) and (Bi2) define the framework of a binomial process with probability. The free
parameters u, d, p are to be determined such that (Bi1) – (Bi3) hold.

Remarks

1. It turns out that P is the risk-neutral probability Q. Literature on the stocha-
stic background: [Musiela&Rutkowski: Martingale Methods in Financial modeling],
[Shreve: Stochastic Calculus for Finance II (Continuous-time models)].

2. In Section 1.5D we shall show for the continuous-time Black–Scholes model

E[St] = S0e
r(t−t0)

E[S2
t ] = S2

0e(2r+σ2)(t−t0)

Set Si for S0, Si+1 for St and ∆t for t − t0.
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3. The expectations are conditional expectations since the initial values S(t0) or Si

are given.

Conclusion for the step i −→ i + 1:

E[S(ti+1) | S(ti) = Si] = Sie
r∆t

Var[S(ti+1) | S(ti) = Si] = S2
i e2r∆t(eσ2∆t − 1)

The expectation of the discrete model is

E[Si+1] = p Siu + (1 − p) Sid.

Equating with the expression of the continuous-time model shows

er∆t = pu + (1 − p)d .

This is the first equation for the three unknowns u, d, p. This gives

p =
er∆t − d

u − d
.

For 0 < p < 1 we require
d < er∆t < u .
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This must hold because otherwise arbitrage is possible. (Compare with Section 1.2B
to see that p is the q and represents the risk-neutral probability.)

Equating variances leads to

Var[Si+1] = E[S2
i+1] − (E[Si+1])

2

= p (Siu)2 + (1 − p) (Sid)2 − S2
i (pu + (1 − p)d)2

!
= S2

i e2r∆t(eσ2∆t − 1) ,

which amounts to
e2r∆t+σ2∆t = pu2 + (1 − p)d2.

A third equation can be posed arbitrarily. For example, a kind of symmetry is expressed
by

u · d = 1.
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The resulting system of nonlinear equations for u, d, p is

β : =
1

2
(e−r∆t + e(r+σ2)∆t)

u = β +
√

β2 − 1

d = 1/u = β −
√

β2 − 1

p =
er∆t − d

u − d

This defines the grid of a tree. By the requirement ud = 1, this simple tree is rigid in
the sense that its parameters u, d, p do not depend on K or S0. The tree is recombining.

2

S

Sd Su

Sd Sud Su2
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Since Si+1 = αSi, α ∈ {u, d} the “branches” of the tree grow exponentially.
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The S-values of the grid are

Sj,i := S0u
jdi−j , j = 0, ..., i, i = 1, ...,M.
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Valuation on the Tree

For tM the value of the option is known from the payoff Ψ(S) = (S−K)+ or (K−S)+:

Vj,M := Ψ(Sj,M )

By he risk-neutral evaluation principle (Section 1.2B),

Vi = e−r∆t E[Vi+1],

or applied to the tree:

Vj,i = e−r∆t · (pVj+1,i+1 + (1 − p)Vj,i+1) .

This relation establishes a recursion, which starts with i = M − 1 and prices V at the
nodes, until V0 := V0,0.
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In case of an American option, each node requires a check whether early exercise is
reasonable. The holder of the option optimizes her position by comparing the payoff
Ψ(S) with the continuation value: she chooses the larger value. This requires to modify
the above recursion. We denote the continuation value

V cont
j,i := e−r∆t (pVj+1,i+1 + (1 − p)Vj,i+1).

For European options Vj,i := V cont
j,i .

For American options Vj,i := max{Ψ(Sj,i), V cont
j,i }, or

call: Vj,i := max{(Sj,i − K)+, V cont
j,i }

put: Vj,i := max{(K − Sj,i)
+, V cont

j,i }
(principle of dynamic programming)

The two different decisions, either holding or exercising the American-style option, have
a geometrical aspect: In the (S, t)-plane the nodes with V cont

j,i > Ψ(Sj,i) characterize
the continuation area, and the other nodes are in the stopping area. How the early-
exercise curve separates the two areas will be discussed in Chapter 4.
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Algorithm (Binomial Method, basic version)

Input: r, σ, S = S0, T, K, put or call,

European or American, M

compute: ∆t := T/M, u, d, p as defined above

S0,0 := S0

Sj,M = S0,0u
jdM−j , j = 0, 1, ...,M

(for American options in addition Sj,i = S0,0u
jdi−j

for 0 < i < M , j = 0, 1, ..., i)

Vj,M from the payoff

Vj,i for i < M by the proper formula

Output: V0,0 is approximation for V (S0, 0)

Advantages of the Method

– easy to implement,

– robust, and

– can be adapted to other types of options.
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Disadvantages of the Method

– accuracy is rather poor:

error O(1/M) = O(∆t), which is linear convergence. (But the accuracy matches
practical requirements.)

– In case V0 is needed for several values of S, the algorithm must be restarted.

Enhancements

– To avoid oscillations, generalize ud = 1 to ud = γ and choose γ such that for t = T
one node of the tree falls on the strike value K. Then the parameters depend on
K and S0, resulting in a more flexible tree and improved accuracy.

– Discrete dividend payment at time tD: Cut the tree at tD and shift the S-values
by −D. As result, evaluate the tree at S̃0 := S0 − De−rtD . (Illustrations in Topic
1 and 5 in the Topics for CF.)

– Sensitivities (“greeks”) are calculated by difference quotients.

Problems

In the higher-dimensional case (e.g. basket option with three or more assets) it is
not obvious how to generalize the tree.
In the literature the above method is often called Cox-Ross-Rubinstein method
(CRR). Other extensions: trinomial method; “implied grid” for variable σ(S, t).
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1.4 Stochastic Processes

This section introduces continuous-time models as they are used by Black, Scholes and
Merton. Essentially we discuss (geometric) Brownian motion.

History

Brown (1827): studied erratic motion of pollen.

Bachelier (1900): applied Brownian motion to model asset prices.

Einstein (1905): molecular motion

Wiener (1923): mathematical model

since 1940: Itô and others

Definition (Stochastic Process)

A stochastic process is a family of random variables Xt for t ≥ 0 or 0 ≤ t ≤ T .

Each sample results in a function Xt called path or trajectory.

Definition (Wiener process / standard Brownian motion)

Wt (notation also W (t) or W or {Wt}t≥0) has the properties:

(a) Wt is a continuous stochastic process
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(b) W0 = 0

(c) Wt ∼ N (0, t)

(d) All increments ∆Wt := Wt+∆t − Wt (∆t arbitrary) on non-overlapping t-
intervals are independent.

(c) means: Wt is distributed normally with E[Wt] = 0 and Var[Wt] = E[W 2
t ] = t.

Remarks

1) “standard”, because it is scalar, driftless, and W0 = 0.
Xt = a + µt + Wt with a, µ ∈ IR is the general Brownian motion (with drift µ).

2) Consequences (also for W0 = a):

E[Wt − Ws] = 0 , Var[Wt − Ws] = t − s for t > s .

(show this as exercise)

3) Wt is nowhere differentiable! Motivation:

Var

[
∆Wt

∆t

]

=
1

(∆t)2
Var[∆Wt] =

(
1

∆t

)2

· ∆t =
1

∆t

tends to ∞ for ∆t → 0.
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4) A Wiener process is self-similar in the sense:

Wβt
d
=

√

β Wt

(both sides obey the same distribution). More general, there are fractal Wiener
processes with

Wβt
d
= βHWt ,

for the standard Wiener process H = 1
2 . H is the Hurst-exponent. Mandelbrot

postulated that finance models should use fractal processes.

Importance

The Wiener process is “driving force” of basic finance models.

Discretization/Computation

So far we have considered Wt for continuous-time models (t ∈ IR). Now we appro-
ximate W by a discretization. Take ∆t > 0 as a fixed time increment.

tj := j · ∆t ⇒ Wj∆t =

j
∑

k=1

(Wk∆t − W(k−1)∆t) =

j
∑

k=1

∆Wk

The ∆Wk are independent, and by Remark 2 satisfy
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E(∆Wk) = 0, Var(∆Wk) = ∆t.

In case Z is a random variable with Z ∼ N (0, 1) [Chapter 2], then

Z
√

∆t ∼ N (0,∆t).

Hence
Z ·

√
∆t for Z ∼ N (0, 1)

serves as model for the process of the ∆Wk.

Algorithm (Simulation of a Wiener process)

start: t0 = 0, W0 = 0; choose ∆t .

loop j = 1, 2, ... :

tj = tj−1 + ∆t

draw Z ∼ N (0, 1)

Wj = Wj−1 + Z
√

∆t

The Wj denotes a realization of Wt at tj .



Seydel: Course Notes on Computational Finan
e, Chapter 1 (Version 2015) 30

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a simulation for ∆t = 0.0002

Stochastic Integral

Motivation:

Assume the price of an asset is described by a Wiener process Wt. Let b(t) be the
number of assets in the portfolio at time t. For simplicity assume that there are
only discrete trading times

0 = t0 < t1 < . . . < tN = T .
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Hence b(t) is piecewise constant:

b(t) = b(tj−1) for tj−1 ≤ t < tj . (∗)

The resulting trading gain is

N∑

j=1

b(tj−1)(Wtj
− Wtj−1

) for 0 ≤ t ≤ T.

Now we approach the time-continuous case and assume arbitrary trading times. The
question is whether the sum converges for N → ∞?

For arbitrary b the integral
∫ T

0

b(t) dWt

does not exist as Riemann–Stieltjes integral. Sufficient for its existence would be a
finite first variation of Wt.

We show: The first variation
N∑

j=1

|Wtj
− Wtj−1

| is unbounded.
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Proof: Clearly

N∑

j=1

|Wtj
− Wtj−1

|2 ≤ max
j

(|Wtj
− Wtj−1

|)
N∑

j=1

|Wtj
− Wtj−1

|

for any decomposition of the interval [0, T ]. Now ∆t → 0. The second variation is
bounded, it converges to a c 6= 0 (see the Lemma below). By the continuity of Wt,
the first factor of the right-hand side goes to 0, and hence the second factor (the
first variation) to ∞.

It remains to investigate what happens with the second variation. The relevant type
of convergence is convergence in the mean,

lim
N→∞

E[(X − XN )2] = 0 ,

written as: X = l.i.m.
N→∞

XN .

It remains to show:
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Lemma

Denote by t0 = t
(N)
0 < t

(N)
1 < . . . < t

(N)
N = T a sequence of partitions of the

interval t0 ≤ t ≤ T , with δN :=
N

max
j=1

(t
(N)
j − t

(N)
j−1). Then:

l.i.m.
δN→0

N∑

j=1

(W
t
(N)
j

− W
t
(N)
j−1

)2 = T − t0

Proof: Exercises

Remark: Part of the proof of the lemma comprises the assertions

E[(∆Wt)
2 − ∆t] = 0

Var[(∆Wt)
2 − ∆t] = 2 · (∆t)2.

In this probabilistic sense the random variable ∆W 2
t behaves similarly as ∆t. Symbo-

lically this is written

(dWt)
2 = dt

and will be used for investigations of orders of magnitude.
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The construction of an integral for our integrands b

t∫

t0

b(s) dWs

is based on
∫ t

t0
b(s)dWs :=

∑N
j=1 b(tj−1)(Wtj

− Wtj−1) for all step functions b in the

sense of (∗).
For more general b we take step functions converging to b in the mean. For literature
see [Øksendal: Stochastic Differential Equations], [Shreve: Stochastic Calculus].
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1.5 Stochastic Differential Equations

A. Integral Equation

Definition (Diffusion model)

The integral equation

Xt = Xt0 +

∫ t

t0

a(Xs, s) ds +

∫ t

t0

b(Xs, s) dWs

for a stochastic process Xt is called Itô stochastic differential equation (SDE). Its
symbolic notation is

dXt = a(Xt, t) dt + b(Xt, t) dWt

Solutions of this stochastic differential equation (that is, of the integral equation) are
called stochastic diffusion, or Itô-process. The term a(Xt, t) is the drift term, and
b(Xt, t) is the diffusion.

Special cases

- The Wiener process is included with Xt = Wt, a = 0, b = 1.

- In the deterministic case b = 0 holds, i.e. dXt

dt
= a(Xt, t).
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Algorithm (analogous as for the Wiener process)

is based on the discrete version

∆Xt = a(Xt, t)∆t + b(Xt, t)∆Wt

with increments ∆W and ∆t as in Section 1.4. Let yj denote an approximation of
Xtj

.

Start: t0, y0 = X0 ; choose ∆t .

loop: j = 0, 1, 2, ...

tj+1 = tj + ∆t

∆W = Z
√

∆t with Z ∼ N (0, 1)

yj+1 = yj + a(yj , tj)∆t + b(yj , tj)∆W

Since dW 2 = dt, we expect an order of only 1
2 ; we come back to this in Chapter 3.
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B. Application to the Stock Market

Model (GBM = geometric Brownian motion)

dSt = µSt dt + σSt dWt

This is an Itô-stochastic SDE with a = µSt and b = σSt. This SDE is linear as long
as µ and σ do not depend on St. For Black and Scholes µ and σ are constant.

(This fills the gap GBM in Assumption 3 in Section 1.2 in the market model.)

µ is interpreted as growth rate, and σ as volatility. The relative change is described
by

dSt

St

= µ dt + σ dWt .

The classic theory of Black, Scholes and Merton (and a significant part of this chapter)
assumes a GBM with constant µ, σ.

(Bachelier’s model was
dSt = µ dt + σ dWt ;

here the price St can become negative.)
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Recommendation

Implement the algorithm (with Z from Chapter 2), and integrate the GBM for a
chosen set of parameters (for instance S0 = 50, µ = 0.1, σ = 0.2) 10000 times until
t = 1. Then distribute the obtained values S1 in subintervals, and count the values.
This yields a histogram reflecting a lognormal distribution (see figure).
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Consequence:

From
∆S

S
= µ∆t + σ ∆W

we conclude for the distribution of the ∆S
S

:

1) distributed normally

2) E[∆S
S

] = µ∆t

3) Var[∆S
S

] = σ2∆t

together: ∆S
S

∼ N (µ∆t, σ2∆t)

This offers a way to calculate volatilities σ empirically: For a sequence of trading days
collect the data ∆S

S
, call them Ri (returns), where Ri+1 and Ri are measured at time

distance ∆t. Assuming that GBM is appropriate to describe the returns, σ is obtained
as

σ =
1√
∆t

∗ standard deviation of the Ri .

This specific value of σ, based on data of the past, is called historic volatility (for the
implied volatility see the Exercises.)

S under GBM can be approximated by the above algorithm as long as ∆t > 0 is small
enough, and S > 0.
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Other models

GBM is continuous, and its density has thin tails, which often fails to describe real
asset prices observed in the market. Therefore also other stochastic processes are
used, as jump processes, or processes with stochastic volatility. In the following, we
stick to the Itô-SDEs, that is to continuous processes driven by Wiener process.

Mean reversion (often used for interest rate models)

Here R denotes an average level of interest rate. Let us investigate the SDE

drt = α(R − rt) dt + σrrβ
t dWt , α > 0

for a stochastic process rt. That is,

a(rt, t) = α(R − rt) mean reversion drift

b(rt, t) = σr rβ
t

with suitable parameters R,α, σr, β (obtained by calibration). This has the effect
on the drift:

rt < R ⇒ positive growth rate

rt > R ⇒ decay
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This effect is superseded by the stochastic fluctuations, but essentially the mean
reversion takes care that the order of magnitude of rt stays close to R, or reverts
to R. The parameter α controls the intensity of the reversion.

For β = 1
2 , i.e. b(rt, t) = σr√rt, the model is called CIR model (Cox-Ingersoll-

Ross model).

Figure: A simulation rt of the Cox-Ingersoll-Ross model for R = 0.05, α = 1, β = 0.5,
r0 = 0.15, σr = 0.1, ∆t = 0.01
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The next extension is to:

Vector-valued processes

Assume Wt = (W
(1)
t , . . . ,W

(m)
t ) is a m-dimensional Brownian motion. Define for

i = 1, ..., n

X
(i)
t = X

(i)
t0

+

∫ t

t0

ai(Xs, s) ds +

m∑

k=1

∫ t

t0

bi,k(Xs, s) dW (k)
s ,

with vectors

Xt =






X
(1)
t
...

X
(n)
t




 , a(Xs, s) =






a1(X
(1)
s , . . . ,X

(n)
s , s)

...
an(X

(1)
s , . . . ,X

(n)
s , s)






and matrix
((

bi,k

))k=1,...,m

i=1,...,n

which involves the covariances of the vector process.
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Example 1 Heston’s model

dSt = µSt dt +
√

vtSt dW (1)

dvt = κ(θ − vt) dt + σvola
√

vt dW (2)

The stochastic volatility
√

vt is defined via a mean reversion for the variance vt.

This model (with n = 2 and m = 2) involves parameters κ, θ, σvola, the correlation
ρ between W (1) and W (2), an initial value v0 and a growth rate µ which may be
given by a risk-free valuation concept. Altogether, about five parameters must be
calibrated. Heston’s model is used frequently.
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Example 2 volatility tandem

dS = σS dW (1)

dσ = −(σ − ζ)dt + ασ dW (2)

dζ = β(σ − ζ) dt
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α = 0.3, β = 10; dashed: ζ

Hint: local volatility means
σ = σ(t, St).
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C. Itô Lemma

Motivation (deterministic case)

Suppose x(t) is a function, and y(t) := g(x(t), t). The chain rule implies

d

dt
g =

∂g

∂x
· dx

dt
+

∂g

∂t
.

With dx = a(x(t), t)dt this can be written

dg =

(
∂g

∂x
a +

∂g

∂t

)

dt

Lemma (Itô)

Assume Xt is an Itô process following dXt = a(Xt, t) dt+b(Xt, t) dWt and g(x, t) ∈
C2. Then Yt := g(Xt, t) solves the SDE

dYt =

(
∂g

∂x
a +

∂g

∂t
+

1

2

∂2g

∂x2
b2

)

dt +
∂g

∂x
b dWt .

That is, Yt is an Itô process with the same Wiener process as the input process Xt.
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Sketch of a proof:

t → t + ∆t

X → X + ∆X

}

→ g(X + ∆X, t + ∆t) = Y + ∆Y

Taylor expansion of g leads to ∆Y :

∆Y =
∂g

∂X
· ∆X +

∂g

∂t
∆t + terms quadratic in ∆t,∆X

Substitute
∆X = a∆t + b∆W

(∆X)2 = a2 ∆t2 + b2 ∆W 2
︸ ︷︷ ︸

=O(∆t)

+2ab∆t∆W

and order the terms according to powers of ∆t, ∆W to obtain

∆Y =

(
∂g

∂X
a +

∂g

∂t
+

1

2

∂2g

∂X2
b2

)

∆t + b
∂g

∂X
∆W + t.h.o.

Similar as in Section 1.4, ∆W can be written as sum, and convergence in the mean is
applied. See [Øksendal].
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D. Application to the GBM model

Assume the GBM model
dS = µS dt + σS dW

with µ and σ constant, i.e. X = S, a = µS, b = σS.

1) Let V (S, t) be smooth (∈ C2)

⇒ dV =

(
∂V

∂S
µS +

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2

)

dt +
∂V

∂S
σS dW

This is the basic SDE which leads to the PDE of Black and Scholes for the
value function V (S, t) of a European standard option.

2) Yt := log(St), i.e. g(x) = log x

⇒ ∂g

∂x
=

1

x
and

∂2g

∂x2
= − 1

x2

⇒ d (log St) =

(

µ − σ2

2

)

dt + σ dWt

Hence the log-prices Yt = log St satisfy a simple SDE, with the elementary
solution:
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Yt = Yt0 +

(

µ − σ2

2

)

(t − t0) + σ(Wt − Wt0)

⇒ log St − log St0 = log
St

St0

=

(

µ − σ2

2

)

(t − t0) + σ(Wt − Wt0)

⇒ St = St0 · exp

[(

µ − σ2

2

)

(t − t0) + σ(Wt − Wt0)

]

For t0 = 0 and Wt0 = W0 = 0, this results in

St = S0 exp
[(

µ − σ2

2

)

t + σWt

]

In summary, St is exponential function of a Brownian motion with drift.

Implications for t0 = 0:

a) log St is distributed normally

b) E[log St] = E[log S0] + (µ − σ2

2 )t + 0 = log S0 + (µ − σ2

2 )t

c) Var[log St] = Var[σWt] = σ2t

summarizing a) – c) means
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log
St

S0
∼ N

(

(µ − σ2

2
)t , σ2t

)

d) This leads to the density function of Y = log S

f̂(Y ) = f̂(log St) =
1

σ
√

2πt
exp

[

− (log(St/S0) − (µ − σ2/2)t)2

2σ2t

]

.

And what is the density of St? The probabilities of S and Y are the same and hence
also the distribution integrals. We apply the transformation theorem (Section 2.2B)
for Y := log S and have the integrands

f̂(Y ) dY = f̂(log S)
1

S
︸ ︷︷ ︸

f(St)

dS.

Consequently, the density f of the distribution of the asset price St is

f(St, t; S0, µ, σ) :=
1

Stσ
√

2πt
exp

[

− (log(St/S0) − (µ − σ2/2)t)2

2σ2t

]

.

This is the density fGBM of the lognormal distribution. It describes the probability
of the transition (S0, 0) −→ (St, t) under GBM.
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e) Now the last gap in the derivation of the binomial method can be closed: There
the continuous model refers to our GBM. As an exercise, realize

E(S) =

∞∫

0

Sf(. . .) dS = S0 eµ(t−t0)

E(S2) =

∞∫

0

S2f(. . .) dS = S2
0 e(σ2+2µ)(t−t0)
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1.6 Risk-Neutral Valuation

(This section sketches basic ideas and concepts. For a thorough treatment we re-
commend literature on Stochastic Finance such as [Musiela&Rutkowski: Martingale
Methods in Financial modeling])

Recall (from the one-period)

V0 = e−rT EQ[Ψ(ST )]

where Q is the artificial probability of Section 1.2 and Ψ(ST ) denotes the payoff.

For the model with continuous time formally the same relation holds. But Q and
EQ are different. It turns out that the density of Q is given by f(St, t; S0, r, σ), with
µ replaced by r. Hence the relation

V0 = e−rT

∫ ∞

0

Ψ(ST ) · f(ST , T ; S0, r, σ) dST

holds for the GBM-based continuous model. In the following we outline the arguments
that lead to this integral.
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Fundamental Theorem of Asset Pricing

The market model is free of arbitrage if and only if there is a probability Q such
that the discounted asset prices e−rtSt are martingales with respect to Q.

Probability space

The same sample space and σ-algebra (Ω,F) underlying a Wiener process are
not specified. The chosen probability P completes (Ω,F) to the probability space
(Ω,F ,P). The independence of the increments ∆W of the Wiener process depend
on P. A process W can be a Wiener process with respect to P, but is no Wiener
process with respect to another probability P̂

Martingale

A martingale Mt is a stochastic process with

E[Mt | Fs] = Ms for all t, s with s ≤ t ,

where Fs is a filtration, i.e. a family of σ-algebras with Fs ⊆ Ft ∀s ≤ t. A filtration
serves as model for the amount of information in a market.

E[Mt | Fs] is a conditional expectation. It can be regarded as expectation of Mt

conditional on the amount of information available until time instant s.

Mt martingale means that Ms at time s is the best possible forecast for t ≥ s.
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Martingale with respect to a probability Q: EQ[Mt | Fs] = Ms for all t, s with s ≤ t.

Examples of martingales

1) any Wiener process

2) W 2
t − t for any Wiener process W .

3) A necessary criterion for martingales is the absence of drift.

Essentially, drift-free processes are martingales.

Market Price of Risk

dS = µS dt + σS dW

= rS dt + (µ − r)S dt + σS dW

= rS dt + σS

[
µ − r

σ
dt + dW

]

The investor expects µ > r as a compensation for the risk, which is represented by σ.
µ − r is the excess return.

γ :=
µ − r

σ
= “market price of risk”

= compensation rate relative to the risk
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Hence
dS = rS dt + σS [γ dt + dW ] . (∗)

Under the probability P the term in brackets represents a drifted Brownian motion
and no (standard) Wiener process.

Girsanov’s Theorem

Suppose W is Wiener process with respect to (Ω,F ,P). In case γ satisfies certain
requirements, there is a probability Q such that

W γ
t := Wt +

∫ t

0

γ ds

is a (standard) Wiener process under Q.

(probability theory: Q results from the Theorem of Radon-Nikodym. Q and P are
equivalent. For constant γ the requirements of Girsanov are fulfilled.)

Application

Substitute dW γ = dW + γdt in (∗) gives

dS = rS dt + σS dW γ.
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This is a change of drift from µ to r; σ remains unchanged. The path of St under the
probability Q is defined by the density f(. . . , r, σ). The transition from f(. . . , µ, σ)
to f(. . . , r, σ) amounts to adjusting the probability from P to Q. The discounted
e−rtSt is drift-free under Q and Martingale. Q is called “risk-neutral” probability.

Trading Strategy

Let Xt be a stochastic vector process of market prices, and bt denotes the vector
with the numbers of shares held in the portfolio. Hence btr

t Xt is the wealth process
of the portfolio.

Example

Xt :=

(
St

Bt

)

,

where St is the market price of the asset underlying an option, and Bt is the value
of a risk-free bond.
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Notation: Vt is the random variable of the value of an European option.
Assumptions:

(1) There is a strategy bt replicating the payoff of the option at time T ,

btr
T XT = Payoff .

bt must be Ft-measurable for all t. (That is, the trader cannot see the future.
Note that the value of the payoff is a random variable.)

(2) The portfolio is closed, no money is inserted or withdrawn. This is the self-
financing property defined as

d(btr
t Xt) = btr

t dXt .

(3) The market is free of arbitrage.

(1), (2), (3) ⇒ Vt = btr
t Xt for 0 ≤ t ≤ T (otherwise there would exist arbitrage)

We consider a European option and a discounting process Yt with the property that
YtXt is martingale. Then one can show that also Ytb

tr
t Xt is martingale (both with

respect to Q).
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Implications for European options for t ≤ T

YtVt = Ytb
tr
t Xt = EQ[YT btr

T XT | Ft] (martingale)
= EQ[YT · Payoff | Ft] (replication)

When the payoff is a function Ψ of ST (vanilla-option under GBM), then

= EQ[YT · Ψ(ST )]

(because WT − Wt is independent of Ft). Discounting with Yt = e−rt implies
specifically for t = 0

1 · V0 = EQ[e−rT · Ψ(ST )]

and hence

V0 = e−rT

∫ ∞

0

Ψ(ST ) · f(ST , T ; S0, r, σ) dST .

This is called risk-neutral valuation.
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Literature on Stochastic Finance: [Elliot & Kopp: Mathematics of Financial Markets],
[Korn: Option Pricing and Portfolio Optimization], [Musiela & Rutkowski: Martingale
Methods in Financial modeling], [Shreve: Stochastic Calculus for Finance].

Outlook

We so far have investigated continuous processes St driven by Wt. To compensate
for occasional drastic changes in the price of underlying, one resorts to models with
stochastic volatility, or to jump processes.

Supplements

The “Greeks” mean the sensitivities of V (S, t; σ, r) and are defined as

Delta =
∂V

∂S
, gamma =

∂2V

∂S2
, theta =

∂V

∂t
, vega =

∂V

∂σ
, rho =

∂V

∂r
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Black–Scholes Formula

For a European call the analytic solution of the Black–Scholes equation is

d1 :=
log S

K
+

(

r − δ + σ2

2

)

(T − t)

σ
√

T − t

d2 := d1 − σ
√

T − t =
log S

K
+

(

r − δ − σ2

2

)

(T − t)

σ
√

T − t

VC(S, t) = Se−δ(T−t)F (d1) − Ke−r(T−t)F (d2),

where F denotes the standard normal cumulative distribution (compare Exercises),
and δ is a continuous dividend yield. The value VP(S, t) of a put is obtained by applying
the put-call parity

VP = VC − Se−δ(T−t) + Ke−r(T−t)

from which
VP = −Se−δ(T−t)F (−d1) + Ke−r(T−t)F (−d2)

follows.


