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Every day of our lives we experience changes that occur either gradually or sud-
denly. We often characterize these changes as quantitative or qualitative, respectively.
For example, consider the following simple experiment (Figure 1). Imagine a board
supported at both ends, with a load on top. If the load λ is not too large, the board
will take a bent shape with a deformation depending on the magnitude of λ and on the
board’s material properties (such as stiffness, K). This state of the board will remain
stable in the sense that a small variation in the load λ (or in the stiffness K) leads to
a state that is only slightly perturbed. Such a variation (described by Hooke’s law)
would be referred to as a quantitative change. The board is deformed within its elastic
regime and will return to its original shape when the perturbation in λ is removed.

λ

K

Figure 1: Bending of a board (white) with stiffness K under load λ

The situation changes abruptly when the load λ is increased beyond a certain critical

level λ0 at which the board breaks (Figure 2b). This sudden action is an example of
a qualitative change; it will also take place when the material properties are changed
beyond a certain limit (see Figure 2a). Suppose the shape of the board is modeled by
some function (solution of an equation). Loosely speaking, we may say that there is a
solution for load values λ < λ0 and that this solution ceases to exist for λ > λ0. The
load λ and stiffness K are examples of parameters.

The outcome of any experiment, any event, and any construction is controlled by
parameters. The practical problem is to control the state of a system—that is, to find
parameters such that the state fulfills our requirements. This role of parameters is occa-
sionally emphasized by terms such as control parameter, or design parameter. Varying a
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Figure 2: Manipulating K [From W.Busch. After the original hand drawing in the
Wilhelm-Busch-Museum, Hannover]

parameter can result in a transition from a quantitative change to a qualitative change.
The following pairs of verbs may serve as illustrations:

bend → break

incline → tilt over

stretch → tear

inflate → burst

The verbs on the left side stand for states that are stable under small perturbations;
the response of each system is a quantitative one. This behavior ends abruptly at
certain critical values of underlying parameters. The related drastic and irreversible
change is reflected by the verbs on the right side. Close to a critical threshold the
system becomes most sensitive; tiny perturbations may trigger drastic changes. To
control a system may mean to find parameters such that the state of the system is
safe from being close to a critical threshold. Since reaching a critical threshold often
is considered as failure, the control of parameters is a central part of risk control.1

For example, the response of a system to variation of a parameter might look as
the situation in Figure 3. We see the temporal variation of a reaction in a chemical
or biological system, where the parameter drifts from the value λ = 0.1 to the value
λ = 0.3 within the time interval 0 ≤ t ≤ 200. The vertical axis might represent

1The prototypical tilt over (in this context already in the first edition of 1988) has become popular
as name for such phenomena (in German: Kippen, or Kipppunkt). But this somewhat negative
meaning is too limited to adequately describe the phantastic aspects of bifurcation. For example,
Hopf bifurcation plays a pivot role in dynamics. One should rather use the neutral term bifurcation.
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Figure 3: Response of a system to a parameter that gradually grows from 0.1 to 0.3

the temperature of a reaction, and the parameter λ could be the opening of a valve.
Initially, for t ≈ 0, the observed state variable reacts only moderately to the growing
parameter. Then, all of a sudden at around time t ≈ 30, when the parameter λ passes
approximately the value 0.13, a large-amplitude oscillation sets in. The regime has
changed drastically. With the parameter growing further, the oscillation slowly dies
out. Finally, the state becomes again stationary (t ≈ 150, λ ≈ 0.25), and the state of
the system has entered another regime. This third regime differs from the first regime
by its significantly higher level.

It is interesting to note what has happened when the parameter passed the interval
0.1 ≤ λ ≤ 0.3: Two critical threshold values were passed, and there was a “hard loss of
stability” of the first regime, which goes along with a jump in the state variable. An-
alyzing the system under consideration closer, reveals the underlying structure, which
is the skeleton of the dynamical behavior. This is illustrated by Figure 4, where the
skeleton is built in (“bifurcation diagram”). The two horizontal axes of the parameter
and of the time match. Two threshold values (in Figure 4 the “bifurcations” of the
heavy line2) initiate the dynamical switches between qualitatively different regimes.

The above-mentioned threshold values are first examples of a class of phenomena
that we denote with the term bifurcation. A key mechanism is indicated by the pair

stationary state ↔ motion.

Let us mention a few examples. The electric membrane potential of nerves is stationary
as long as the stimulating current remains below a critical threshold; if this critical value

2example of Hopf bifurcations
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Figure 4: The skeleton of Figure 3: two plots in one figure. Here the time-dependent
oscillation of Figure 3 is shown in red color (horizontal axis: time 0 ≤ t ≤ 200).
The underlying bifurcation diagram (in black) reveals the structure of the dynamics,
characterizing the way the oscillation changes with the parameter (horizontal axis:
parameter 0.1 ≤ λ ≤ 0.3). Two bifurcations of the black curves are shown. Birth and
death of the oscillation set in at the bifurcations.

is passed, the membrane potential begins to oscillate, resulting in nerve impulses. The
motion of a semitrailer is straight for moderate speeds (assuming the rig is steered
straight); if the speed exceeds a certain critical value, the vehicle tends to sway. Or
take the fluttering of a flag, which will occur only if the moving air passes fast enough.
Similarly, the vibration of tubes depends on the speed of the internal fluid flow and
on the speed of an outer flow. This type of oscillation also occurs when obstacles,
such as bridges and other high structures, are exposed to strong winds. Many other
examples—too complex to be listed here—occur in combustion, fluid dynamics, and
geophysics.

The transition from a stationary state to motion, and vice versa, is also a qualitative
change. Here, speaking again in terms of solutions—of governing equations—we have a
different quality of solution on either “side” of a critical parameter (Figures 3, 4). Let
the parameter in question again be denoted by λ, with critical value λ0. Thinking, for
instance, in terms of the state variable wind speed, the state (e.g., of a flag or bridge)
is stationary for λ < λ0 and oscillatory for λ > λ0. Qualitative changes may come in
several steps, as indicated by the sequence

stationary state

regular motion

irregular motion.

The transition from regular to irregular motion is related to the onset of turbulence, or

4



“chaos.” — As a first tentative definition, we will denote a qualitative change caused
by the variation of some physical (or chemical or biological, etc.) parameter λ as
bifurcation. We will use the same symbol λ for various kinds of parameters. Some
examples of parameters are listed in the Table.

TABLE. Examples of parameters.

Phenomenon Controlled by a typical parameter

Bending of a rod Load
Vibration of an engine Frequency or imbalance
Combustion Temperature
Nerve impulse Generating potential
Superheating Strength of external magnetic field
Oscillation of an airfoil Speed of plane relative to air
Climatic changes Solar radiation

Some important features that may change at bifurcations have already been men-
tioned. The following list summarizes various kinds of qualitative changes:

stable ↔ unstable

symmetric ↔ asymmetric

stationary ↔ periodic (regular) motion

regular ↔ irregular

order ↔ chaos

Several of these changes may take place simultaneously in complicated ways.

The quality of solutions or states is also distinguished by their geometrical shape—
that is, by their pattern. For example, the five patterns in Figure 5 characterize five
possibilities of how a state variable varies with time. The solution profile of Figure 5(a)
is “flat” or stationary, the state remains at a constant level. Figure 5(b) shows a wavy
pattern with a simple periodic structure. The patterns of Figure 5(c) and (d) are again
wavy but less regular, and the pattern of Figure 5(e) appears to be irregular (chaotic).
The five different patterns of Figure 5 arise for different values of a parameter λ; new
patterns form when the parameter passes critical values. This example illustrates why
such bifurcation phenomena are also called pattern formation. — Figure 5 shows an
example of an isothermal reaction.3 Such transitions are typical for a wide range of
problems. A similar sequence of patterns is, for example, the velocity of the reaction
front, where the first profile (a) stands for a uniformly propagating combustion front,
and the wavy pattern (b) represents a regularly pulsating front.

So far this introduction has stressed the situation where the state of the system
varies with time—that is, the focus has been on temporal dynamics. In addition, the
state of a system may also vary with space. For example, animal coats may have spots

3from [A.Bayliss, B.J.Matkowsky: Two routes to chaos in condensed phase combustion. SIAM
J.Appl.Math. 50 (1990) 437].
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(a) λ = 12.90

(b) λ = 11.00

(c) λ = 10.55

(d) λ = 10.11

(e) λ = 9.90

Figure 5: Changing structure or pattern: growing complexity with decreasing param-
eter λ; (a): stationary state, (b): periodic state, (c): periodic with double period, (d):
fourfold period, (e): aperiodic motion (“chaos”). This is an example of an isother-
mal reaction; parameter values are shown on the right; each of the five boxes depicts
time-dependent temperature y(t) for 0 ≤ t ≤ 10, the vertical axes are scaled such that
0 ≤ y ≤ 85.
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or stripes, which can be explained by variations of morphogens. If the morphogen
is non-uniformly distributed (the heterogeneous state) a pattern of spots or stripes
develops. No pattern develops in case the morphogens are distributed homogeneously.
The pair

homogeneous ↔ heterogeneous

is the spatial analog to the pair “stationary ↔ motion” that stresses temporal dynam-
ics. Problems in full generality will often display both temporal and spatial dynamics.
For example, a chemical reaction may show a concentration with spiral-wave pattern
that migrates slowly across the disk.

Transitions among different patterns (as depicted in Figure 5) are ubiquitous. For
instance, cardiac rhythm is described by similar patterns. One of the possible patterns
may be more desirable than others. Hence, one faces the problem of how to switch
patterns. By means of a proper external stimulus one can try to give the system
a “kick” such that it hopefully changes its pattern to a more favorable state. For
example, heart beat can be influenced by electrical stimuli. The difficulties are to decide
how small a stimulus to choose, and how to set the best time instant for stimulation.
One pattern may be more robust and harder to disturb than another pattern that
may be highly sensitive and easy to excite. Before manipulating the transition among
patterns, mechanisms of pattern selection must be studied. Which structure is most
attractive? Which states are stable? For which values of the parameters is the system
most sensitive?

To obtain related knowledge, a thorough discussion of bifurcation phenomena is
necessary, which requires language, tools and insight of mathematics.
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